Liberty BASIC Programmer's Encyc

The ABCs of APIs Lesson 5
Retrieving Text Strings from API calls.

Table of Contents

String Buffers

Trimming the String

Length of Return String

Resetting the Buffer

Size of Buffer

PTRs in API Calls

Experiment!

What's Next?

In Lesson 4 we learned how to use the SetWindowTextA API call to send a new caption to a window as a
string of text. We can also retrieve the text contained in windows and controls with GetWindowTextA.
Liberty BASIC allows us to retrieve text from a textbox, texteditor and from the text field in a combobox,
but not from other controls and windows. We can expand Liberty BASIC's capabilities with
GetWindowTextA.

String Buffers

In the previous lesson, we learned that strings are sent into API calls as pointers to the location of the text
in memory. Because the API function knows the memory address, it can modify the data at that address.

We must set up a string variable for the PTR argument in GetWindowTextA. The function retrieves the
text and places it in this string variable. The variable can also be called a buffer.

Here's how we set up an empty string. Notice that we are using the handy SPACE$() function. Liberty
BASIC allows us to create a string with a specified number of blank spaces.

Capti on$ = space$(128)

page 1/6

/ABCs%20of%20APIs%204

Liberty BASIC Programmer's Encyc

The GetWindowTextA function also requires an argument that specifies the length of the string buffer.
We can get the length with the LEN() function, like this:

| engt h=l en(Caption$) + 1

We add 1 to the length argument because Liberty BASIC adds a null termination character to strings
passed into API calls.

We'll retrieve the window handle as we've done in previous lessons with HWND(). GetWindowTextA
looks like this:

Call DIl #user32, "GetWndowTextA",

h as ul ong, _ "w ndow handl e
Caption$ as ptr,_ 'string buffer
| ength as |ong, _ 'size of buffer

result as |ong

Here is a small program that retrieves the caption of the window and gives us a notice:

nomai NWi n
Open "W ndow Caption" for w ndow as #1
#1 "trapclose [quit]"

h = hwnd(#1)

"create a string buffer:
Caption$ = space$(128)

| engt h=I en(Caption$) + 1

Call DIl #user32, "GetWndowTextA",

h as ul ong, _ "w ndow handl e
Caption$ as ptr,_ 'string buffer
| ength as |ong, _ 'size of buffer

result as |ong
notice "Caption is: ";Caption$
wai t
[quit] cl ose #1:end

page2/6

Liberty BASIC Programmer's Encyc

Trimming the String
Our string is 128 characters long -- much longer than the text retrieved. GetWindowTextA places a null

termination character at the end of the text string it returns. A null character is CHR$(0). We can trim the
string of blank spaces and null characters with the TRIM$() function, like this:

notice "Caption is: "; TRI Mb(Capti on$)

Length of Return String
The GetWindowTextA function returns the length of the text. This number is in the "result" part of the

API call. Many text retrieval API functions tells us the length of the string and this is very handy. Here is
the function again, with the result commented.

Call DIl #user32, "GetWndowTextA",

h as ul ong, _ "w ndow handl e
Caption$ as ptr,_ 'string buffer
| ength as | ong, _ 'size of buffer
result as |ong "l ength of returned string

And here is our small program again, but this time it gives the user a notice of the length of the caption,
rather than the text in the caption:

nomai NnWi n
Qpen "W ndow Caption"” for w ndow as #1
#1 "trapclose [quit]"

h = hwnd(#1)

‘create a string buffer:
Capti on$ = space$(128)

| engt h=I en(Caption$) + 1

CalI DI #user32, "GetWndowTextA",

h as ul ong, _ "wi ndow handl e

Caption$ as ptr, _ 'string buffer

| ength as | ong, _ 'size of buffer

result as |ong "length of returned string
notice "Length of caption is: ";result

page 3/6

Liberty BASIC Programmer's Encyc

wai t
[quit] cl ose #1:end

Since we know the length of the returned string, we can also trim it with the LEFT$() command, like this:

Caption$ = left$(Caption$, result)

Resetting the Buffer

Once the GetWindowTextA function has placed a null terminated string of text in the buffer, the size of
the buffer has changed. If we plan to use the same variable as a string buffer again in the program, each
time we use it we must set aside sufficient memory for it.

Capti on$ = space$(128)

Size of Buffer
When we attempt to retrieve text with GetWindowTextA we must create a large enough buffer, or the
function cannot return all of the text. There is another API function that returns the length of the text. We

can use this number to create a buffer that is large enough to hold the text.

The function looks like this:

cal I dI'l #user32, "GetW ndowText Lengt hA",
h as ul ong, _ "w ndow or control handle
nunber Chars as long 'returns | ength of text

Creating a buffer with the information is done like this:

Capti on$ = Space$(nunber Char s)
And here is the small program with that added function:
nomai Nw n

Qpen "W ndow Caption" for w ndow as #1
#1 "trapclose [quit]"

page 4 /6

Liberty BASIC Programmer's Encyc

h = hwnd(#1)

cal I dl'l #user32, "GetW ndowTextLengt hA",
h as ul ong, _ "W ndow or control handl e
nunber Chars as long 'returns | ength of text
noti ce nunber Chars
"create a string buffer:
Caption$ = space$(nunber Chars)
| engt h=l en(Caption$) + 1

Call DIl #user32, "GetWndowTextA",

h as ul ong, _ "w ndow handl e
Caption$ as ptr,_ 'string buffer
I ength as | ong, _ 'size of buffer

result as |ong

Caption$ = | eft$(Caption$, result)
notice "Caption is "; Caption$

wai t

[quit] close #1:end

PTRs in API Calls

Things to Remember

A PTR is a pointer to an address in memory

e We pass strings as arguments in API calls by passing a pointer to their location in memory.

If we want the function to place text into our string variable, we must make it large enough to hold
the text.

We make a string buffer by creating a string variable and filling it with empty spaces with the
SPACES$() function.

Most of the API calls that deal with strings work like the examples in Lesson 4 and Lesson 5.

Experiment!

If you want to hone your skills with text in API calls, take what you've learned in Lesson 4 and Lesson 5
and change or retrieve text in other Liberty BASIC windows or controls. Try retrieving the caption of a
button. Try giving a new caption to a groupbox. You'll find that string API functions are very helpful and
not difficult to use.

page5/6

Liberty BASIC Programmer's Encyc

What's Next?

Lesson 6 will discuss the use of structs in API calls.

Written by Alyce Watson. For more on APIs, see:
APIs for Liberty BASIC

page 6/6

/ABCs%20of%20APIs%206
http://www.lulu.com/content/611431
http://www.tcpdf.org

	ABCs of APIs 5

