Liberty BASIC Programmer's Encyc

The ABCs of APIs Lesson 6
Using Structs

Table of Contents

Defining a STRUCT

STRUCTSs as Arguments

Assigning Values

Size of STRUCT

Retrieving Values

Getting a Window's Coordinates

Using Values Retrieved from Structs

More?

What's Next?

In Lesson 2 we learned how to use the MoveWindow API call to relocate and resize a window or control.
We can retrieve the coordinates of a window or control with GetWindowRect. This function requires a

STRUCT. A STRUCT is similar to the PTR we discussed in Lesson 5 because it is a pointer to a location
in memory. The similarity ends there, though.

Defining a STRUCT

A struct must be defined before it can be used. A STRUCT statement looks like this:

STRUCT Struct Name, firstMenber as type, secondMenber as type

The struct name is listed first, followed by a list of its parts, or members separated by commas. The struct
may have many members, or just one member. Here is a simple struct with four members.

page 1/6

/ABCs%20of%20APIs%202
/ABCs%20of%20APIs%205

Liberty BASIC Programmer's Encyc

STRUCT RECT, left as long, top as long, right as |ong,
bottom as | ong.

In an earlier lesson we said that a CALLDLL statement must be on a single line. A STRUCT statement
must also be on a single line. It can be placed on multiple lines if the underscore line continuation
character is used. Liberty BASIC then sees the struct statement as a single line. Here is the struct as it is
typed on multiple lines:

STRUCT RECT, _
left as long, _
top as long, _
right as long, _
bottom as | ong.

Struct members can be the same types we used the CALLDLL statement. See Lesson 1 . Here is an
example that has a PTR string member and a numeric long member.

STRUCT PERSON, nane$ as PTR, age as |ong

STRUCTSs as Arguments

A struct is passed into a calldll statement as an argument with type "as struct". Here is a generic calldll
statement that includes a struct.

STRUCT StructNane, firstMenber as |ong secondMenber as ul ong

CALLDLL FunctionNane, handl e as ulong, StructNanme as struct,
result as |ong

Assigning Values

Some API calls require the programmer to place values into struct members before the function is called.
We assign values to the struct members with the equals sign. The struct members are accessed with the
name of the struct, followed by a dot, then the member name, another dot, then the word STRUCT. Here
is a simple example that creates a struct with a PTR member and a LONG member, then assigns values to
both members.

STRUCT PERSON, nane$ as PTR, age as |ong

page2/6

/ABCs%20of%20APIs%201

Liberty BASIC Programmer's Encyc

PERSON. nane$. struct = "John Snith"
PERSON. age. struct = 45

Size of STRUCT

Some API functions that have struct arguments have an argument for the size of the struct. We can get the
size of a struct with Liberty BASIC's native LEN() function with the name of the struct followed by a dot,
then the word "struct" inside the parentheses, like this:

Struct Si ze = LEN(PERSON. struct)

Note that a bug in Liberty BASIC requires the word ''struct' to be in lowercase letters. If instead
"STRUCT" is used with LEN() a ''type mismatch'' error is generated by Liberty BASIC.

Here is a code snippet to illustrate using LEN() to get the size of a struct:

STRUCT PERSON, name$ as PTR, age as |ong

StructSi ze = | en(PERSON. struct)
print "The size of the struct is ";StructSize

Retrieving Values

We retrieve values from structs in a similar way to the method used to assign values. To assign a value:

STRUCT PERSON, name$ as PTR, age as |ong
PERSON. age. struct = 45

To retrieve the value:

STRUCT PERSON, name$ as PTR, age as |ong

PERSON. age. struct = 45
ageVal ue = PERSON. age. struct
print "Age is "; ageVal ue

page 3/6

Liberty BASIC Programmer's Encyc

Getting a Window's Coordinates

We now know enough to make the GetWindowRect API call to retrieve a window's coordinates. The
function requires a RECT struct, which looks like this:

STRUCT RECT, _
left as long, _
top as long, _
right as long, _
bottom as | ong.

The Microsoft documentation for this structure gives us this information:

Members

left

Specifies the x-coordinate of the upper-left corner of the rectangle.
top

Specifies the y-coordinate of the upper-left corner of the rectangle.
right

Specifies the x-coordinate of the lower-right corner of the rectangle.
bottom

Specifies the y-coordinate of the lower-right corner of the rectangle.

The API function looks like this:

cal I dl |l #user32, "GetWndowRect", _

hW ndow as ul ong, _ ' w ndow handl e
RECT as struct, _ "struct containing info
result as |ong ''nonzero = success

Here is a small program that uses this function. It first sets up a RECT struct and obtains the handle of the
window with Liberty BASIC's HWND() function. It then makes the GetWindowRect API call. After the
function returns, the window's coordinates are contained in the struct. The program prints them in the
mainwin for us to see.

open "Test Wndow' for w ndow as #1
#1 "trapclose [quit]"

'get the window s handl e
hW ndow = HWND(#1)

page 4 /6

Liberty BASIC Programmer's Encyc

"declare a struct:
STRUCT RECT, _
left as |ong, _
top as long, _
right as long, _
bottom as | ong

"retrieve wi ndow coordi nat es:
cal I dl'l #user32, "GetW ndowRect", _

hW ndow as ul ong, _ 'w ndow handl e
RECT as struct, _ "struct containing info
result as long 'nonzero = success

"print coords in mainw n:

print "The left coordinate is "; RECT.left.struct
print "The top coordinate is "; RECT.top. struct

print "The right coordinate is "; RECT.right.struct
print "The bottom coordinate is "; RECT. bottom struct

wai t
[quit] cl ose #1:end

Using Values Retrieved from Structs

The previous example printed the values in the struct. We can also assign their values to variables. If we
use the struct again in another API call, the values will change. We can save the values in variables. To
save the top coordinate of the window in the variable WindowTop, we do this:

W ndowTop = RECT. top. struct

The values in structs can be used in any way that variables and literal values can be used. Since we know
the window's coordinates, we can obtain its width and height by subtracting values. We subtract the left
value from the right value to get the width. We subtract the top value from the bottom value to get the
height.

"do math on retrieved values to get wi dth and height:
width = RECT.right.struct - RECT.|eft.struct
hei ght = RECT. bottom struct - RECT. top. struct

Here it is, used in the sample program:

page5/6

Liberty BASIC Programmer's Encyc

open "Test Wndow' for w ndow as #1
#1 "trapclose [quit]"

‘get the window s handl e
hW ndow = HWND(#1)

"declare a struct:
STRUCT RECT, _
left as long, _
top as long, _
right as long, _
bottom as | ong

‘retrieve wi ndow coordi nat es:
cal I dl | #user32, "GetWndowRect", _

hW ndow as ul ong, _ ' w ndow handl e
RECT as struct, _ "struct containing info
result as |ong ''nonzero = success

"do math on retrieved values to get wi dth and hei ght:
width = RECT.right.struct - RECT.left.struct

hei ght = RECT. bottom struct - RECT.top. struct

print "Wdth is ";wdth

print "Height is ";height

wai t
[quit] close #1:end

More?

You can improve your STRUCT skills by trying these methods on other types of windows and controls.
What happens if you try to obtain the coordinates of a button? A dialog window? Try it and see!

What's Next?

Lesson 7 will discuss the use of structs as pointers to numeric values.

Written by Alyce Watson. For more on APIs, see:
APIs for Liberty BASIC

page 6/6

/ABCs%20of%20APIs%207
http://www.lulu.com/content/611431
http://www.tcpdf.org

	ABCs of APIs 6

