Liberty BASIC Programmer's Encyc

The ABCs of APIs Lesson 8
Windows API in Liberty BASIC

Table of Contents

DLLs Recognized by Liberty BASIC

DLLs That Must Be Opened

Windows Constants

Windows Constants Defined by Liberty BASIC

Additional Windows Constants

Multiple Values and OR

What's Next?

DLLs Recognized by Liberty BASIC

Liberty BASIC recognizes most of the standard Windows DLLs automatically. The list is as follows:

#user32 - window and control management functions

#kernel32 - memory, computer info, timing, kernel info

#gdi132 - graphics

e #winmm - multimedia

#shell32 - Windows shell, executing programs, folder dialogs
#comdlg32 - common dialogs (printer, font, file, color)
#comctl32 - common controls (treeview, progressbar, tabstrip, etc.)

Because Liberty BASIC recognizes these DLLs, they can be used in CALLDLL without being opened
first. This example is from Lesson 1 . #user32 is called with CALLDLL to discover if a button is enabled.

Cal | DLL #user 32, "IsW ndowEnabl ed", _
hButton as uLong, _ 'handl e of w ndow or control

page 1/7

/ABCs%20of%20APIs%201

Liberty BASIC Programmer's Encyc

result As Long 'nonzero = enabl ed

DLLs That Must Be Opened

Any DLL that is not listed above must receive an OPEN command before it can be used. It also must be
closed with a CLOSE command when it is no longer needed, or when the program ends. Lesson 9 will
discuss both Windows and add-on DLLs that require "open for DLL".

Windows Constants

Windows Constants are simply numbers. They are used in API calls to send messages. They take this form
in the documentation for languages like Visual Basic and C:

SW_HIDE
SW_SHOW

The first two or three letters define a category. In the example above, "SW" stands for "ShowWindow"
because these are constants for use in the "ShowWindow" API call. The prefix is followed by an
underscore character, then a descriptive word or two.

Windows constants are declared in other languages and given a value. The two constants in the example
above have values as follows:

SW_HIDE =0
SW_SHOW =5

The actual values can be used in an API call. Constants are used because it is easier for the programmer to
remember that "SW_SHOW" will cause a window to be visible, than it is to remember that the number 5

will do it.

Both examples below work in exactly the same way:

Cal | DLL #user 32, "ShowwW ndow', hWwhd as ulLong, 5 As Long, r As Long
Cal | DLL #user 32, "ShowwW ndow', hWwhd as ulLong, _SW SHOW As Long, r As
Long

If you look at the second line in this example, you'll see an additional underscore character prepended to
the name of the constant, "_SW_SHOW". See the next section to learn why that is so.

Windows Constants Defined by Liberty BASIC

page 2 /7

/ABCs%20of%20APIs%209

Liberty BASIC Programmer's Encyc

Many Windows constants are defined by Liberty BASIC. An initial underscore character is prepended to
the name of Windows constants to signal Liberty BASIC that this is, in fact, a Windows constant. Liberty
BASIC then substitutes the proper value whenever that constant is used in a program.

SW_SHOW
In Liberty BASIC code, is written as:
_SW_SHOW

The following example causes a widow to be minimized with the "ShowWindow" API call. Values for
some of the "SW" constants are included in the comments.

'SWH DE = 0

' SW NORMAL = 1

' SW SHOM NI M ZED = 2

' SWMAXI M ZE = 3

' SW SHOWNOACTI VATE = 4
' SW SHOWN = 5
'SWMNMZE = 6

' SW SHOMM NNOACTI VE = 7
' SW SHOMNA = 8

' SW RESTORE = 9

hMai n = hwnd(#mai n)

Cal | DLL #user 32, "Showw ndow', hMai n as ulLong,
_SWMNMZE As Long, r As Long

The following demo opens a window, then mimizes it.

nomai nw n

Qpen "My W ndow' for wi ndow as #main
#main "trapclose [quit]”

hMai n = hwnd(#mai n)

Cal | DLL #user 32, "Showw ndow', _

hMai n as ulLong, _ "handl e of w ndow

_SWMNMZE As Long, 'nessage to mnimze w ndow
r As Long

wai t

page 3/7

Liberty BASIC Programmer's Encyc

[quit] cl ose #main:end

Additional Windows Constants

Liberty BASIC does not recognize all of the Windows constants. For unrecognized constants, you may use
the actual value, as found in the documentation for the API call in question, or you may create your own
variable that stands in for a Windows constant. When you create such a variable, do not use an underscore
as one of the characters. Liberty BASIC expects variable names containing underscores to be Windows
constants that it recognizes. If you use an underscore as part of a variable name, Liberty BASIC will give
you an "undefined windows constant" error.

Incorrect format for defining your own Windows constant:
MY_CONSTANT
Some alternatives:

MY.CONSTANT
MyConstant

How can you know which Windows constants are defined by Liberty BASIC? It's easy! Try printing them.

The following code generates the "undefined Windows constant" error, because Liberty BASIC does not
know the value for this contant.

print _CSI DL_PROGRAMS

The following demo creates a variable that stands in for the unrecognized Windows constant and uses it to
retrieve the location of the user's program folder.

CSI DL. PROGRAMS = 2
struct IDL,cb As Long, ablD As short

cal ldll #shell 32, "SHCet Speci al Fol derLocati on", _
0 as long, CSIDL. PROGRAMS as long, IDL as struct, ret as |long

if ret=0 then
Pat h$ = Space$(512)
i d=I DL. cb. struct
calldl'l #shell 32, "SHGetPathFrom DListA",id as |ong, Path$ as

page 4 /7

Liberty BASIC Programmer's Encyc

ptr, ret as |long

Get Speci al fol der $
el se

Get Speci al folder$ = "Error"
end if

Left $(Path$, InStr(Path$, Chr$(0)) - 1)

print Get Speci al fol der$

Here is the same demo, but with one difference. Instead of creating a variable to hold the value of the
Windows constant, the value itself is used.

struct IDL,cb As Long, ablD As short

cal ldll #shell 32, "SHGet Speci al Fol derLocati on", _
0 as long, 2 as long, IDL as struct, ret as |long

if ret=0 then
Pat h$ = Space$(512)
i d=I DL. cb. struct
calldll #shell 32, "SHGetPathFrom DLi stA",id as |ong, Path$ as
ptr, ret as |long
Get Speci al fol der$ = Left$(Path$, InStr(Path$, Chr$(0)) - 1)
el se
Get Speci al folder$ = "Error"
end if

print Get Special fol der$

Multiple Values and OR

Some API functions include arguments that convey multiple messages in a single argument. You can put
multiple Windows constants together to form a single message with the BITWISE OR operator. It looks
like this:

value = CONSTANT.ONE OR CONSTANT.TWO OR CONSTANT.THREE
value =4 or 7 or 23

The first method uses named constants, and the second uses actual values. Both methods work in the same
way.

The following demo uses multiple values in a single argument. It creates a Windows messagebox. A single
argument tells Windows which combination of icons and buttons to use for this messagebox.

page 5/7

Liberty BASIC Programmer's Encyc

Some possible icons and buttons are as follows:

Icon Sets:

_MB_ICONASTERISK (same as _MB_ICONINFORMATION) 'a lower case "i"
_MB_ICONEXCLAMATION 'an exclamation point

_MB_ICONHAND (same as _MB_ICONSTOP) 'circle with X [Win95/98]
_MB_ICONQUESTION 'a question mark

Push Button Sets:

_MB_OK

_MB_OKCANCEL
_MB_YESNO
_MB_YESNOCANCEL
_MB_RETRYCANCEL
_MB_ABORTRETRYIGNORE

To create a messagbox containing the red X icon and buttons with captions "Retry" and "Cancel, put the
values together with OR like this:

wtype = _MB_ | CONSTOP or _MB_RETRYCANCEL
Note that we've assigned the OR'd value to a variable. You cannot use OR in an API argument.

Incorrect usage:

calldll #dll, "MFunction", _
MY. ONE OR MY. TWO as long, result as |ong

Correct usage:

val ue = MY. ONE OR MY. TWO

calldll #dl1, "MFunction", _
val ue as long, result as |ong

The demo creates a messagebox that looks like this:

page 6 /7

Liberty BASIC Programmer's Encyc

Error in Processing!

8 The operation was not completed. Try again?
Title$ = "Error in Processing!"
Message$ = "The operation was not conpleted. Try agai n?"

wtype = _MB | CONSTOP or _MB_RETRYCANCEL

cal I dl'l #user32, "MessageBoxExA", _

h as ul ong, _ "w ndow handl e can be 0
Message$ as ptr, 'desired nessage text
Title$ as ptr, _ "desired titl ebar caption
wtype as |ong, _ "flag for icon and buttons
| anguage as word, _ 'language identifier
result as |ong "returns action code

' possi bl e values for result:
"l = K was clicked

"2 = Cancel was clicked
'3 = Abort was clicked
"4 = Retry was clicked
"5 = lIgnore was clicked
"6 = Yes was clicked
"7 = No was clicked

if result = 4 then
print "Retrying now. "
end if

if result = 2 then

print "Canceling operation.”
end if

What's Next?

Lesson 9 will discuss both Windows and add-on DLLs that require "open for DLL".

Written by Alyce Watson. For more on APIs, see:
APIs for Liberty BASIC

page 7/7

/ABCs%20of%20APIs%209
http://www.lulu.com/content/611431
http://www.tcpdf.org

	ABCs of APIs 8

