
Liberty BASIC Programmer's Encyc

Easy Polygon via API
-

 Alyce
Easy Polygon via API | What is a Polygon? | Drawing Polygon Outlines | Drawing Filled Polygons | API
Outline Polygons | Drawing Filled Polygons the EASY Way | The Device Context | Pens and Brushes | The
PolyPoints STRUCT | The Polygon API Function | Demo One | Demo Two | Demo 3 and Demo 4

What is a Polygon?
A polygon is a closed plane figure bounded by straight sides. A polygon must have at least three sides. Two
lines cannot create a closed figure. The sides need not be equal in length, and there can be many, many
sides. Liberty BASIC has native graphics commands to draw some specialized polygons. We can draw four-
sided polygons whose angles are right angles. We do this with the "box" and "boxfilled" commands. If all
sides are equal, the figure is a square. The sides of the box are always parallel to the sides of the window.
In other words, we cannot set a box on the diagonal and create a diamond. The "box" command draws the
outline of a box. It is drawn in the current "color" and the lines are the current"size." The "boxfilled"
command draws a filled box. The outline is created in the same way as for the "box", but the inside is
filled with the current "backcolor."

Drawing Polygon Outlines
We can draw a polygon in any orientation, with any number of sides, if we use the "line" command, or if
we use turtle graphics. Here is an example of the simplest polygon: the triangle.

nomainwin
WindowWidth=220:WindowHeight=120
open "Outline Polygon" for graphics_nsb_nf as #1
#1 "trapclose [quit]"
#1 "down; fill cyan"
#1 color red; size 5"
#1 "backcolor yellow"
#1 "line 100 10 200 80"
#1 "line 200 80 5 80"

 page 1 / 8

https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce

Liberty BASIC Programmer's Encyc

#1 "line 5 80 100 10"
wait

[quit] close #1:end

Drawing Filled Polygons
Although we issued the command "backcolor yellow", the polygon is not filled with yellow. We can create
a filled polygon by drawing it in a loop, decreasing the size each time through the loop. The code gets
complicated really quickly, though, and large figures would take a while to complete. Alternately, we can
draw an outline, and use the FloodFill API call to fill it, but there is a much better way to draw filled
polygons by API, which is detailed later in this topic.

nomainwin
WindowWidth=220:WindowHeight=120
open "Filled Polygon" for graphics_nsb_nf as #1
#1 "trapclose [quit]"
#1 "down; fill cyan"

x2=200:x1=5
y=80

#1 "color yellow; size 1"

while x1 < x2
 y=y-1
 x1=x1+2
 x2=x2-1
 #1 "line ";x1;" ";y;" ";x2;" ";y
wend

 #1 "flush"
wait

[quit] close #1:end

API Outline Polygons
All figures drawn with API calls to GDI (Graphics Device Interface) are filled! The only way to draw an

 page 2 / 8

Liberty BASIC Programmer's Encyc

outline polygon with API calls is to create a special transparent brush with which to fill the polygon. It
must be created, selected into the device context, then later de-selected from the device context and
destroyed. It is easier to draw outline polygons with native Liberty BASIC commands, like "line" or "go"
or "goto".

Drawing Filled Polygons the EASY Way
Filled polygons are most easily drawn with API calls.

The Device Context
When we issue API graphics commands, we do not send them to a window. We send them to GDI by way
of a construction known as a Device Context. This is the "interface" in Graphics Device Interface (GDI).
GDI acts as an interface between our code and the hardware. We don't need to know the specifics of the
hardware. How many colors are supported by the display screen? We don't need to know! We let GDI
make any needed color adjustments for us. To draw with GDI, we first issue a call to GetDC, which takes
the handle of the graphics window or graphicbox as an argument, and returns the handle of its Device
Context (DC). We then issue our drawing commands to GDI through this Device Context Handle,
commonly referred to as hDC. When an hDC is no longer needed, or when the program ends, a call must
be made to ReleaseDC.

Pens and Brushes
GDI allows you to create several kinds of pens with which to draw figures. It isn't necessary to use GDI to
do this, though. The pen will be the color we set when we issue a "color" graphics command. It will be the
size we set with the "size" graphics command. GDI also allows us to create several kinds of brushes with
which to fill drawn figures. Again, it isn't necessary to create brushes. The figures will be filled with the
color set when we issue a "backcolor" command.

The PolyPoints STRUCT
The key to drawing a polygon with GDI is the creation of a STRUCT that contains the pairs of points. It
looks like this:

STRUCT PolyPoints,_

 page 3 / 8

Liberty BASIC Programmer's Encyc

 x1 as long,_
 y1 as long,_
 x2 as long,_
 y2 as long,_
 x3 as long,_
 y3 as long

Notice that the members of the struct come in x,y pairs. There can be as many pairs of points as needed to
draw the polygon desired. For demonstration purposes in this article, we're keeping it short and simple by
using the minimum, which is three pairs of points, or six members in the struct. The Polygon API call
needs to know how many vertices are contained in the polygon. That number is equal to half the number of
members in the struct. Remember, each vertex consists of an xy pair. For a triangle we need six struct
members to create THREE vertices:

nCount=3 'number of x,y pairs in STRUCT

The xy coordinates of the vertices of the polygon are set when the struct is filled.

 PolyPoints.x1.struct = 100
 PolyPoints.y1.struct = 10
 PolyPoints.x2.struct = 160
 PolyPoints.y2.struct = 100
 PolyPoints.x3.struct = 40
 PolyPoints.y3.struct = 100

The members can be filled with literal numbers or with variables.

The Polygon API Function

The figure above is created with this simple API call:

calldll #gdi32, "Polygon",_
hdc as ulong,_ 'device context of window or control
PolyPoints as struct,_'array of points
nCount as long,_ 'number of x,y pairs in array

 page 4 / 8

Liberty BASIC Programmer's Encyc

result as long

Demo One
Below, you will find a simple demo program that draws a triangle. It looks like this:

nomainwin
WindowWidth=200:WindowHeight=160
open "Polygon" for graphics_nsb_nf as #1
#1 "trapclose [quit]"
#1 "down; fill cyan"
#1 "color red; size 5" 'will be used to outline figure
#1 "backcolor yellow" 'will be used to fill figure

h=hwnd(#1) 'window handle

'get device context for window:
calldll #user32, "GetDC",_
h as ulong,_ 'window handle
hdc as ulong 'returns handle to device context

STRUCT PolyPoints,_
 x1 as long,_
 y1 as long,_
 x2 as long,_
 y2 as long,_
 x3 as long,_
 y3 as long

nCount=3 'number of x,y pairs in STRUCT

'The STRUCT must be filled before it can be used in an api call:

 PolyPoints.x1.struct = 100
 PolyPoints.y1.struct = 10
 PolyPoints.x2.struct = 160
 PolyPoints.y2.struct = 100
 PolyPoints.x3.struct = 40
 PolyPoints.y3.struct = 100

 page 5 / 8

Liberty BASIC Programmer's Encyc

calldll #gdi32, "Polygon",_
hdc as ulong,_ 'device context of window or control
PolyPoints as struct,_'array of points
nCount as long,_ 'number of x,y pairs in array
result as long

calldll #user32, "ReleaseDC",_
h as ulong,_ 'window handle
hdc as ulong,_ 'device context
ret as long

'method to flush GDI graphics:
#1 "getbmp pix 0 0 180 120"
#1 "drawbmp pix 0 0;flush"

wait

[quit] close #1:end

Demo Two
Here an amusing demo that allows the user to click three times with the mouse to set the vertices of a
triangle. After the third mouse click, the triangle is drawn. This program demonstrates the way to fill the
struct members with variables.

nomainwin
WindowWidth=400:WindowHeight=400
open "Draw a Triangle" for graphics_nsb_nf as #1
#1 "trapclose [quit]"
#1 "down; fill cyan"
#1 "color red; size 5" 'will be used to outline figure
#1 "backcolor yellow" 'will be used to fill figure
#1 "setfocus;when leftButtonDown [draw]"
#1 "place 10 30"
#1 "\Click three spots to draw a triangle."

h=hwnd(#1) 'window handle

'get device context for window:
calldll #user32, "GetDC",_

 page 6 / 8

Liberty BASIC Programmer's Encyc

h as ulong,_ 'window handle
hdc as ulong 'returns handle to device context

STRUCT PolyPoints,_
 x1 as long,_
 y1 as long,_
 x2 as long,_
 y2 as long,_
 x3 as long,_
 y3 as long
nCount=3 'number of x,y pairs in STRUCT

wait

[draw]
 count=count+1
 if count=1 then
 'remove text
 #1 "fill cyan"
 'draw vertex
 #1 "set ";MouseX;" ";MouseY
 'fill first xy pair in struct with mouse coords
 PolyPoints.x1.struct=MouseX
 PolyPoints.y1.struct=MouseY
 wait
 end if

 if count=2 then
 'draw vertex
 #1 "set ";MouseX;" ";MouseY
 'fill second xy pair in struct with mouse coords
 PolyPoints.x2.struct=MouseX
 PolyPoints.y2.struct=MouseY
 wait
 end if

 if count=3 then
 'draw vertex
 #1 "set ";MouseX;" ";MouseY
 'fill struct with last point xy
 PolyPoints.x3.struct=MouseX
 PolyPoints.y3.struct=MouseY
 count=0 'reset counter variable
 end if

 'after the third mouse click, draw the triangle

 page 7 / 8

Liberty BASIC Programmer's Encyc

 calldll #gdi32, "Polygon",_
 hdc as ulong,_ 'device context of window or control
 PolyPoints as struct,_'array of points
 nCount as long,_ 'number of x,y pairs in array
 result as long

 'method to flush GDI graphics:
 #1 "place 10 30"
 #1 "\Click three spots to draw a triangle."
 #1 "segment segID"
 #1 "delsegment segID"
 #1 "getbmp pix 0 0 400 400"
 #1 "drawbmp pix 0 0;flush"

 wait

[quit]
close #1

calldll #user32, "ReleaseDC",_
h as ulong,_ 'window handle
hdc as ulong,_ 'device context
ret as long

end

Demo 3 and Demo 4
Stefan Pendl has shared two enchanced versions of the polygon code. The methods are for programmers
with advanced API skills. The methods make it possible to easily draw polygons with many points. Find
them here:

|Stefan's Advanced Polygon API Demos

Easy Polygon via API | What is a Polygon? | Drawing Polygon Outlines | Drawing Filled Polygons | API
Outline Polygons | Drawing Filled Polygons the EASY Way | The Device Context | Pens and Brushes | The
PolyPoints STRUCT | The Polygon API Function | Demo One | Demo Two | Demo 3 and Demo 4

Powered by TCPDF (www.tcpdf.org)

 page 8 / 8

/StefanPolygon
http://www.tcpdf.org

	APIPolygon

