Liberty BASIC Programmer's Encyc

Accessing the Serial Port

Rod Bird

Table of Contents

Accessing the Serial Port

Pin out

Making the connection

Loop back
Opening the port

Handshaking

Sending and receiving our first message

Buffers

Message content

Message timing
Keeping pace

Breathing

Timer

Double buffer

Reading and writing the handshaking lines

Obtaining the serial port #handle

Pauses

Closing the port

page 1/ 13

Liberty BASIC Programmer's Encyc

PC's use a serial communications standard usually referred to as RS232. This standard defines the signals
and lines of the port and was first established in the early 1960s. Once regarded as complex, its present
format is simplified and easy to implement in Liberty BASIC.

An RS232 serial port is always hardware based. It uses voltages higher than normally used in a PC,
typically -15 to +15 volts and so needs dedicated hardware. The port will be implemented on the
motherboard of older PC's, as a separate PCI card in later PC's and in more modern machines it will take
the guise of a dongle on the end of a USB lead.

Let me differentiate the Universal Serial Bus (USB) and the serial port. USB is the new wired way to
connect PC peripherals. Almost any kind of peripheral comes in a USB flavor. Joysticks, keyboards,
printers etc.including serial port and parallel port interfaces. Now it matters not a jot that the serial port we
are going to discuss is wired in via USB. The device itself will behave exactly like a serial port soldered on
the motherboard.

When I say exactly, I should differentiate between the very original serial port and all other types, defined
as "virtual" serial ports. The difference is that the originals had fixed memory addresses and could be
programmed by "bit banging". That is directly accessing the memory addresses of the controlling
hardware. Thus pins could be set and reset simply by writing to a single, fixed memory address.

Liberty BASIC allows this with INP and OUT but as so few of us will possess such a serial port I'm not
going to cover it. There are examples of the technique on the Forum. Virtual ports don't allow "bit
banging" but we can access the pins in other ways.

Pin out

Check out the diagram below. I'm showing the DB9 format, this is the simplest format, as we might have
been discussing DB25 and its 25 pin names. Most new devices will use the DB9 format. If yours is DB25 it
is pretty easy to research the pin outs. We will actually be using very few of the pins even in DB9 format.

1 4
: \ I
(1)
N | 00O | N
N o000 /|
v
§ —3
6 7 9
Pin Signal Pin Signal
1 Data Carrier Detect [Data Set Ready
2 Received Data Request to Send
3 Transmitted Data 8 Clear to Send
4 Data Terminal Ready 9 Ring Indicator
5 Signal Ground

RTS & DTR are outgoing handshaking lines that we can set and hold. DCD, DSR, CTS, and RI are
incoming handshaking lines that we can read. RX & TX are controlled by the serial port hardware and pass

page 2/ 13

Liberty BASIC Programmer's Encyc

the serial data.

A positive voltage at the TX pin indicates ON or SPACE, a negative voltage indicates OFF or MARK. The
port itself is pretty robust and will withstand the odd short or grounding but do take care if connecting your
own kit, make sure it will withstand the voltages. Some modern implementations sometimes work with O
volts as OFF and +5 volts as ON but will only operate over a limited cable length.

Making the connection

Now how do we connect all of these pins between two devices to create a serial link? Well we only need
three of the pins, TX, RX, and GND. Connect the TX of one to the RX of the other and vice versa,
connect the GNDs and you have a working serial communications link with just three wires!

el

To——

DB 9 female
[
é Jﬂ

w

s

\5_/ o1

Because we cross connect the TX and RX pins, independent channels are established for two-way (full-
duplex) communications. Each device has an input buffer and an output buffer. Messages, in the form of
ASCII characters are accepted from the PC and queued in the output buffer to be passed over the
communications link as time permits. At the other end the received characters are stored in an input buffer
awaiting the receiving PC reading and emptying that buffer. Thus there are four buffers involved in any
serial link.

Data is passed across the wire as a sequence of ON OFF bits, the rate bits are passed at is determined by
the Baud rate, 9600 bits per second is common. Typically 8 data bits define one character and to that
parity checking and stop bits are added. This additional bit information helps the serial hardware pass the
messages efficiently.

With 8 data bits ASCII characters between 0 and 255 can be sent. If we drop down to seven bits we are
limited to sending ASC values between 0 and 127. Always, the smallest component that can be sent is one
character, a byte, a number between 0 and 127 or 255.

Loop back

If you want to have some fun you can link the TX and RX pins of your device. This is called "Loop back"
and lets you send and receive messages from yourself. This is very useful for experimenting. You may also
link pins 1,6 and 4 and pins 7 and 8 to mimic handshaking but all you really need are pins 2 and 3 linked.

page 3/ 13

Liberty BASIC Programmer's Encyc

DB 9 female

Opening the port

This line of code might start to make a little more sense.

open "Con2: 9600, n, 8, 1" for random as #comHandl e

. Com?2: names the port to be used

. 9600 defines the baud rate

. states no parity bit is added

. 8 states that 8 bits are used to define the character

. 1 states that 1 stop bit has been appended

. random allows us to read and write to the port

. #commbhandle is the handle or Windows identifier of the port (actually a number)

~N O AW

Several serial ports may exist on your PC; by convention they are named Com1, Com2 and so on.
Typically Com1 and Com?2 are used to name the hardware on the motherboard, virtual ports can have
wider ranging names; Com5,6,7,8 etc.

You will choose the rest of the settings to match the device you are attaching. Most devices define exactly
how they should be set up on the serial link. If you don't know, experiment, you can't break anything.

Handshaking

Most often, simple devices will dispense with handshaking. Handshaking is all about signaling from one
device to the other to start or stop sending data or to flag that the device is plugged in and ready to go. Carl
recommends these additional settings in the open com statement.

open "con®: 9600, n, 8, 1, ds0, ¢cs0O, rs" for random as #comHandl e

1. dsO - Set DSR timeout in milliseconds to 0, effectively off
2. ¢s0 - Set CTS timeout in milliseconds to 0, effectively off
3. rs - Disable detection of RTS (request to send)

page 4/ 13

Liberty BASIC Programmer's Encyc

Using this recommended style ensures that the simplest serial link is established, all that is required is for
the message to be passed from TX to RX pin. All other pins are ignored.

That said the two pins that give Liberty BASIC coders most trouble are RTS and DTR, Liberty can set and
reset these lines. RTS is on by default, DTR is not. If you have a device that refuses to work with Liberty
BASIC, DTR may need set on.

Why do we need to set DTR on?

1. Handshaking, the purpose for which the RTS and DTR lines were designed, though the need for
handshaking has diminished and few new devices need it.

2. Power, the port never did cater for powering external devices, it was primarily a communications
port, but lots of folks wanted their devices to be lean and mean and not burdened with power
supplies or batteries. So they stole power from the DTR pin, just a few milliamps, enough to power
new cmos low power electronics.

3. Opto Isolation, this is power again but for a different reason. To be completely electrically isolated
some hardware uses opto electronic devices that pass the signal by infrared light. To work, the PC
side of these devices needs power for the infrared diodes.

Sending and receiving our first message

Let’s assume you have linked together TX and RX, pins 2 and 3. This loop back test will allow us to
experiment. Here is the code we will use, when you run it use the debugger, the ladybug icon, and single
step through the program. You will of course have to know the Com name, use Windows Device Manager
to check if you are unsure. Remember you can't break anything.

open "con®: 9600, n, 8,1, ds0, csO,rs" for random as #commHandl e
print #commHandl e, "Hell o"

dat aRead$ = i nput $(#commHandl e, 7)

print dataRead$

Now I asked you to step through the program for two reasons, firstly to let you see how the code and
variables change but more importantly to give things time to actually happen. It takes time for Windows to
open and establish the port. It takes time for the message to be sent bit by bit. In all of the code you write
for serial ports you must think through this timing issue. Liberty is extremely fast, the serial port is very
slow in comparison.

Buffers

The serial buffers allow us to manage this difference in speed. Messages will be queued for transmission
and queued on receipt. It is up to us as programmers to time the writing, reading and clearing of the

page 5/ 13

Liberty BASIC Programmer's Encyc

buffers to keep loosely in pace with the serial hardware. The default size of the buffer is 8kb. This can be
changed with the Com statement but you should rarely need to alter this. You would perhaps make it larger
if you were dealing with high speed serial transfer but equally if your code keeps pace the buffer increase
is not needed. For example;

Com = 16384

Message content

Let’s talk through what the previous messaging code actually did. The Open Com statement opened the
port and established the input and output buffers. Moments later the "Hello" text was sent to the output
buffer. Immediately the serial hardware would start sending the info bit by bit from the TX pin to the RX
pin and over time the "Hello" message would build up in the input buffer. We then sucked the message out
of the input buffer with the input$ command.

Notice that we read in 7 bytes not 5. Why? Well you need to be aware that Liberty appends characters to
print statements, CR, a mnemonic for chr$(13) and LF, a mnemonic for chr$(10). On screen this would
cause the cursor to return to the left and move down one line, CR stands for Carriage Return, LF for Line
Feed. This is standard windows protocol and these additional characters are called control characters.

These control characters are not visible; you only ever get to see displayable, ASCII characters. So keep in
mind that serial messages can contain hidden characters and you may need to allow for them.

In the above coding example we could have suppressed the, CR LF pair by ending the print statement with

@,

a;

print #commHandl e, "Hello";

The above code would only send 5 characters, no control characters would be added. You will of course
tailor the message to suit the device you are messaging. Some will expect just the message. If it is a fixed
length then fine but if it is not how will the device know it has all been received?

Adding a CR LF pair is how Windows does it, some microcomputers will expect a CR, chr$(13). Some
will use a delimiter, perhaps "*" or "I" to signal the message is complete.

Don't be confused by how we name characters. There are only 256 characters that can be sent (0-255). I
might display them to you (write them down) as "A" or chr$(65) both mean the same thing. I might use
mnemonic CR or chr$(13) or even &HOD, Hexadecimal OD = 13, all three mean the same thing.

Get yourself a good ASCII table, one that shows the ASCII value, the symbol and the hex value of each
ASCII character. You will need to be aware of how ASC(), CHR$() and HEXDEC(), DECHEX$() work
as functions when formatting or interpreting messages.

page 6/ 13

Liberty BASIC Programmer's Encyc

Message timing

This is often the first real problem you will encounter, how to keep pace with messages. There is one
command that can help and that is the command to check the length of the text currently in the input
buffer. But it is easily misused.

nunByt es = | of (#conmHandl e)

The numBytes variable will hold the number of characters "currently” in the buffer. Now characters may
be coming in continuously, in short random bursts or in evenly timed packets. Therefore we may have
measured the buffer in the middle of a transmission and it may already be larger than we measured! What
to do? Well there is no one answer, you must choose a strategy that suits the transmission timing.

Picture in your mind a buzzing bee, its buzzing away doing stuff, occasionally it stops and sucks nectar
from a stamen. It takes an instant, the bee is happily buzzing and flying and it got what it wanted. Now
imagine the bee sitting by a stamen waiting for the little drop of nectar to ooze out. It's not flying, it’s
grounded and it isn't busy. It could have collected a thousand drops of nectar elsewhere while it waits for
the nectar to ooze from the stamen.

Liberty buzzes and the buffer oozes, the important lesson is not to slow Liberty to the speed of the buffer.
The fastest and most effective way to slow Liberty is to code something like this.

open "con®: 9600, n, 8, 1, ds0, ¢cs0O, rs" for random as #comHandl e

whi | e nunByt es=0

nunByt es = | of (#conmHandl e)

wend

dat aRead$ = i nput $(#commHandl e, | of (#comHandl e))
print dataRead$

Or this second coding trap, the character by character drip.

open "con®: 9600, n, 8, 1, ds0, ¢cs0O, rs" for random as #comHandl e

[read]
whi | e | of (#comrHandl e) =0
wend

page 7/ 13

Liberty BASIC Programmer's Encyc

dat aRead$ = i nput $(#commHandl e, 1)
print dataRead$
goto [read]

I see this coding often, can you see what is happening? Liberty is buzzing away at a million cycles per
second looping round and round awaiting the slow serial transfer to complete.

Now you might say "so what", but it does matter. Windows is multi threaded but still serial. That means
that if Liberty hogs processor cycles things slow down. Liberty won't be able to do anything else itself, it
won't react to keyboard or mouse input, your computer and all other applications will become less
responsive as Windows shares fewer cycles with other applications. Not good and completely avoidable.

Only use the above coding styles if you are dealing with very fast paced messages, hundreds if not
thousands of messages per second. In most BASIC and microprocessor situations things will be happening
very much slower than this.

Keeping pace

So, the first thing to understand is the pace of transmission. A serial multimeter reading voltages might
send four bytes, four times per second. A serial GPS device may send more complex messages, four
positional thirty byte messages and one twenty byte update message every second. The multimeter may use
a "*" delimiter, the GPS may name messages with a four letter header but also delimit each with "GPS*".
You need to be aware of the format and frequency of the messages you will be receiving.

You need to consider how often the message "suite" is transmitted. In the case of the multimeter four
times per second and the GPS device, despite its complexity, once per second. No need to query the buffer
a million times between messages, you just need to query and read it loosely in pace with the message
suite.

Consider the multimeter and the two erroneous coding styles listed above. Can you see that four times per
second the message will be received and the code will print it? Each transmission will take about 4
milliseconds. Can you also see that in between times the code will be locked in the while wend loops? So
for 984 milliseconds every second the code will be stuck in a loop, for the other 16 milliseconds it will be
processing the message, what else gets done?

Breathing
To let the processor breathe and manage other tasks you should time the reading of the buffer. If you are
receiving four messages per second then you might plan to check the buffer and read it four times per

second. However, it is generally better to check twice as fast as you expect the messages to be received.

That way you never get behind and un-read messages never build up in the buffer. You might imagine just

page 8/ 13

Liberty BASIC Programmer's Encyc

missing a message, you therefore did not read it in and you wait another quarter of a second before trying
again. Another message arrives, you read the first but a second remains sitting in the buffer and you will
forever be one message behind. If you check at twice the transmission rate you never fall in arrears.

Timer

The timer is our friend when planning to keep pace with messages. There may be occasions when you have
a lot of computation to do and you may be able to balance the time that takes with the timing of the buffer
read but generally speaking you are far better off setting up a repeating timer event to read the buffer.

open "con?: 9600, n, 8, 1, ds0, csO,rs" for random as #commHandl e
timer 125, [bufferread]

wai t

[buf f erread]

I f | of (#commHandl e) >= 4 then

dat aRead$ = i nput $(#comHandl e, 4)

print dataRead$

end if

wai t

That will happily read the multimeter, catch up if it misses a message and allow plenty breathing space for
the PC to manage other tasks. Remember that the timer is a repeating event. Turn it off if you pause or
branch off to do other things.

Double buffer

You can by now probably envision how you would grab fixed length messages, but what about variable
length messages? How do we keep pace? Well keeping pace is easy; it’s just what we have described
above. The complication is how much to pull out the buffer. You cannot see the delimiters in the buffer
and you don't know how long the message actually is. The solution is to pull whatever is in the buffer into a
secondary buffer and parse it.

Here I have commented out the comm statements, copy and paste the code and it will run without a serial
connection. Use the debugger and step through the code.

"create sonme dummy buffer info
del i m ter $=chr $(10) +chr $(13)
buffer$= "This is the first nessage"+delinmter$

page 9/ 13

Liberty BASIC Programmer's Encyc

buf fer$=buffer$+"This is the second nessage"+delimter$
buf fer$=buffer$+"This is the third message"+delimter$
buffer$=buffer$+"This is the fourth"+delinter$

"open "con®: 9600, n, 8, 1, ds0, cs0O,rs" for random as #conmHandl| e

"timer 100, [bufferread]
"wai t

"[buf f err ead]
"if | of (#comHandl e) >0 t hen
' dat aRead$=i nput $(#commHandl e, | of (#commHandl e))

[doubl ebuf fer]
buf f er $=buf f er $+dat aRead$
delimt=instr(buffer$,delimter$, 1)

[1 oop]
if delimt>0 then

dat aRead$=l ef t $(buffer$, delimt)
buffer$=right$(buffer$,len(buffer$) - delimt -1)
print dataRead$

end if

delimt=instr(buffer$,delimter$, 1)

if delimt>0 then [| oop]

"end if
"wait for next [bufferread]
wai t

The code reads the serial buffer at the usual pace, it does not care how many characters are in the serial
buffer it simply pulls them all out and appends them to the remnants of the previous read. Then we parse
out the message by seeking the delimiter. If we find one we print the message, delete it and take another
look at the double buffer. We [loop] If there are any more complete segments and print that out to, until all
complete messages are parsed out.

Now some of you might be thinking, what if we missed the very start of the messages, how do we know
that the first character in the buffer is the start of the message? Well nothing is sent until the port is ready.
Once it is ready messages are queued in the input buffer, nothing is lost and it will sit patiently till you
suck it out. Seeking the end of the message is all that is required.

Reading and writing the handshaking lines

You can do a limited amount of input and output with the handshaking pins. Remember RTS and DTR are
outputs that we can turn on and off. CTS DSR RI and DCD are inputs that we can read. If you are

page 10/ 13

Liberty BASIC Programmer's Encyc

interested in controlling external electronics I would advise you to purchase an add on card, something like
the BitWhacker boards. These can be sent messages via the serial port and are hugely more flexible. If
your needs are simple then you might make use of the handshaking pins as follows.

Obtaining the serial port #handle

The additional functionality we need to manage the hardware requires API calls. Not too complex but you
might want to read up on some of the excellent tutorials that exist. We first of all need to know the #handle
Windows assigns to the comm port. Stefan shows us how to do this. We can then use the
EscapeCommFunction to manage the handshaking pins.

"Open the port briefly using an APl call to determi ne the handl e given
by W ndows

"W will use this handle later in Liberty, its the only way to get it.
"substitute your own port nunber

| pFi | eName$ = " ConR"

dwCreationDi stribution = _OPEN _EXI STI NG

hTenpl ateFil e = _NULL

cal Il dl'l #kernel 32, "CreateFil eA",

| pFi | eName$ as ptr,

dwDesi redAccess as ul ong,

dwShar eMode as ul ong,

| pSecurityAttri butes as ulong, _

dwCr eati onDi stri bution as ul ong,

dwFl agsAndAttri butes as ul ong,

hTenpl at eFi | e as ul ong,

hFi | eHandl e as ul ong

cal 1 dl| #kernel 32, "C oseHandl e",
hFi | eHandl e as ul ong,
result as |ong

" hFi | eHandl e now cont ai ns
"the #handle, a nunber, that identifies the port

"Create a struct to recieve the incom ng handshaki ng data
"this data contains CIS DSR RI and RLSD i nfo.

"For nore detail go to

"http://msdn. m crosoft.confen-us/library/aa363258(VS. 85). aspx
struct nmodem DSRCTS as | ong

' Now open the comport in Liberty and use the hFil eHandl e val ue in API

page 11/13

Liberty BASIC Programmer's Encyc

calls
open | pFi | eNanme$; ": 9600, n, 8, 1, ds0, cs0O,rs" for random as #com

‘now set reset and read the handshake lines like this

print "setting DIR'

CALLDLL #kernel 32, "EscapeCommfunction”, hFil eHandl e as ul ong,
_SETDTR as | ong, _

result as |ong

print "re-setting DIR'

CALLDLL #kernel 32, "EscapeCommtunction”, hFileHandl e as ul ong,
_CLRDTR as | ong, _

result as |ong

print "re-setting RTS"

CALLDLL #kernel 32, "EscapeCommfunction", hFil eHandl e as ul ong,
_CLRRTS as |ong, _

result as |ong

print "setting RTS"

CALLDLL #kernel 32, "EscapeCommtunction”, hFileHandl e as ul ong,
_SETRTS as | ong, _

result as |ong

print "readi ng handshake |i nes"

CALLDLL #kernel 32, "Get Commivbdentt at us", hFil eHandl e as ul ong,
nodem as struct, _

result as void

print "DSR/ CTS Byte = "; nodem DSRCTS. st ruct

"Use AND to determ ne which signal lines are on eg:

i f nodem DSRCTS. struct and _M5 CTS ON then print "CTS pin is on"
i f nodem DSRCTS. struct and _MS DSR ON then print "DSR pin is on"
i f nodem DSRCTS. struct and _MS RING ON then print "Rl pin is on"
i f nodem DSRCTS. struct and _MS RLSD ON then print "DCD pin is on"

Print "C osing comport"”
cl ose #com
end

Pauses

Notice that if you simply ran this code it would all happen in an instant. Use the debugger and step through
to see it all take place. In your own code you may need to insert short pauses or delays to allow things to
happen. Opening the port for example, if you immediately try and read it you may get an error. Give it a
little time to establish. I code delays like this.

page 12/13

Liberty BASIC Programmer's Encyc

code
gosub [del ay]
code

[del ay]

ti mer 500, [enddel ay]
wai t

[enddel ay]

tinmer O
return

Closing the port

It is best to open the port and leave it open till you are completely finished.

Print "d osing com port™
cl ose #com
end

Now you have all of the code you need to manage the serial port. I hope you have lots of fun doing so.

page 13/13

http://www.tcpdf.org

	AccessingSerialPort

