
Liberty BASIC Programmer's Encyc

Using ActiveX DLLs in Liberty BASIC
Part 1
Originally published in NL 130.
-

 DennisMcK
Using ActiveX DLLs in Liberty BASIC | Using an ActiveX DLL | Registering the DLL | Code to Use the
DLL | Difference from Normal DLLs | Using the ActiveX DLL with LB_DispHelper | Listing Files in the
Zip Archive | Demo

Using an ActiveX DLL
This tutorial will attempt to explain how to use an AciveX dll with Liberty BASIC and LB_DispHelper.

The subjects covered are:

1. Registering an ActiveX dll.
2. Initializing COM.
3. Uninitializing COM.
4. How to obtain the ProgID of the ActiveX dll.
5. Getting the IDispatch pointer to the ActiveX dll.
6. Releasing the IDispatch pointer to the ActiveX dll.
7. Calling the methods in the AciveX dll.
8. Getting return values from the ActiveX dll methods.
9. How to work with classes (coclasses) in the ActiveX dll.

10. Working with variant Dates.

LB_DispHelper is based on DispHelper, a free open source C library developed by xtmouse. DispHelper
provides the necessary functions for interfacing with COM. The home of DispHelper is
http://disphelper.sourceforge.net . The library cannot be used as-is with Liberty BASIC because it is a C
library and uses unicode strings which LB does not support at this time. LB_DispHelper.dll was created to
make DispHelper compatible with Liberty BASIC. Interfacing functions for some of the C library routines
were added and modifications were made to convert strings from ansi to unicode and back. Variants are
converted to the correct variable type within the library. It should be noted that ActiveX controls cannot be
used with DispHelper at this time. The complete set of free LB_DispHelper ActiveX tools may be found
at The Liberty Belle.
Download DLL and documentation here:

ActiveX Demo.zip

Details
Download
91 KB

 page 1 / 11

https://www.wikispaces.com/user/view/DennisMcK
https://www.wikispaces.com/user/view/DennisMcK
http://disphelper.sourceforge.net
/file/view/ActiveX%20Demo.zip/236295120/ActiveX%20Demo.zip
/file/view/ActiveX%20Demo.zip/236295120/ActiveX%20Demo.zip
/file/detail/ActiveX%20Demo.zip
/file/view/ActiveX%20Demo.zip/236295120/ActiveX%20Demo.zip

Liberty BASIC Programmer's Encyc

The ActiveX dll used in this tutorial is Xzip.dll from http://www.xstandard.com . Xzip provides industry
standard zip and unzip abilities for your application. This dll was chosen because it is fairly simple to
implement and is well documented.

Registering the DLL
Before you can use an ActiveX dll it must registered with regsvr32.exe. The dll should be installed into a
folder that will be its permanent location. If the dll is moved to a different folder after it's registered it will
no longer work. If you decide to rename the folder it occupies or move it to a new location it must be
unregistered first, then registered again after it is moved.
To register the dll:
1. Move the dll to a directory like: "C:\Program Files\XStandard\Bin\".
2. Open a command prompt and cd to the directory where the dll is located.
3. Type regsvr32 XZip.dll

To unregister the dll:
1. Open a command prompt and cd to the directory where the dll is located.
2. Type regsvr32 -u XZip.dll

With some systems you may need to type the full path to both regsvr32 and XZip.

Code to Use the DLL
Now that the dll is registered we can begin writing some code to use it. The LB_DispHelper.dll functions
that are used will be explained as we progress. Most of the dll functions return pointers or take pointers to
variables so structures are used within the program for this purpose.

Struct comObj, obj As Ulong 'for receiving pointers to COM objects
Struct LVAL, x As Long
'for receiving numeric returns (long integers)
 'from COM methods
Struct STRVAL, x As Ptr
'for receiving string returns from COM methods

To use COM it must be initialized, and when the program is finished it must be Uninitialized. Since
LB_Disphelper and oleaut32.dll should also be opened and closed at these same times, a couple of subs
can be used to simplify things.

 page 2 / 11

http://www.xstandard.com

Liberty BASIC Programmer's Encyc

'Call at the start of the program.
'Opens LB_dispHelper, initializes COM,
'and turns on DispHelper error reporting.
Sub BeginCOM
 Open "oleaut32.dll" For Dll As #ole
'Required for variant Date conversion.
 Open "LB_dispHelper.dll" For Dll As #com
 Calldll #com, "dhInitializeCom", FALSE As Long, r As Long
 Calldll #com, "dhToggleExceptions", 1 As Long, r As Long
End Sub

'Call at the end of the program.
'Closes LB_dispHelper, uninitializes COM.
Sub EndCOM
 Close #ole
 Calldll #com, "Uninitialize_COM", 1 As Long, r As Void
 Close #com
End Sub

Difference from Normal DLLs
In Liberty BASIC, dlls are normally opened with 'Open "this.dll" for dll as #x', but this will not work with
AcitiveX dlls. Instead, an IDispatch pointer for the AcitiveX dll must be obtained. Don’t worry about what
an IDispatch pointer is, it’s a number similar to a function pointer or a window handle and it's used to
identify a COM object in your program. To get this pointer you must know the
VersionIndependentProgID or ProgID for the ActiveX dll. This is a string that should be provided by the
ActiveX developer but in many cases it isn't. In cases where the ActiveX dll has a both a ProgID and an
VersionIndependentProgID, you should use the VersionIndependentProgID. The Xzip API reference lists
it as "XStandard.Zip".
If you use a dll that isn't documented or doesn't give you the one of the ProgIDs you can use the
LB_DispHelper Object Browser to create your own documentation.
Now that we know the ProgID we can get the IDispatch pointer. This next function will take care of this.

objZip = CreateObject("XStandard.Zip")

'Create an instance of ObjName$ on the local machine
Function CreateObject(ObjName$)
 Calldll #com, "dhCreateObject", ObjName$ As Ptr, _NULL As Long, _
 comObj As Struct, r As Ulong
 CreateObject = comObj.obj.struct
 comObj.obj.struct = 0
End Function

This is very important, every object (IDispatch pointer) obtained must also be released before your

 page 3 / 11

Liberty BASIC Programmer's Encyc

program ends. Again, a simple sub can be used.

Sub SetNothing Object
 Calldll #com, "dhReleaseObject", Object As Ulong, r As Void
End Sub

To release the objZip IDispatch pointer:

Call SetNothing objZip

Using the ActiveX DLL with LB_DispHelper
Now we can move on to using the ActiveX dll. It’s common for the methods in these dlls to use optional
arguments and LB_DispHelper uses methods that allow for a variable number of arguments. The
documentation for Xzip lists all of the subs, functions, classes, properties, and constants that can be used.
This tutorial only uses a few of them.

The first one we will examine is

Sub Pack(sFilePath As String, sArchive As String, [
bStorePath As Boolean = False], [sNewPath As String], [
lCompressionLevel As Long = -1])
Add file or folder to
 an archive. Compression level 1 is minimum, level 9
 is maximum, all other values default to level 6.

sFilePath is the path to the file to be added to the zip file.
sArchive is the full path to the zip file.

The arguments within brackets [] are optional. To call this sub from LB we use the dhCallMethod
function in LB_DispHelper. dhCallMethod is used to call methods that do not return values, in other
words, Subs. For now we will ignore the optional arguments and only use sFilePath As String, and
sArchive As String.

 Sub Zip.Pack XZipObject, src$, zip$
 Calldll #com, "dhCallMethod", XZipObject As Ulong, _
 ".Pack(%s, %s)" As Ptr,_
 src$ As Ptr, zip$ As Ptr, r As Long

 page 4 / 11

Liberty BASIC Programmer's Encyc

End Sub

Examine this breakdown of the above call to dhCallMethod.

Calldll #com, "dhCallMethod", _
 XZipObject As Ulong, _
'The IDispatch pointer of the COM object.
 _ 'In this case objZip.
 ".Pack(%s, %s)" As Ptr,_
'We are calling sub Pack with two string arguments.
 src$ As Ptr, _ 'Arg 1: sFilePath As String.
 zip$ As Ptr, _ 'Arg 2: sArchive As String.
 r As Long 'LB_DispHelper return, 0 = success.

The second argument to dhCallMethod specifies the method name that is being called along with the types
of the arguments for sub Pack. ".Pack(%s, %s)". DispHelper uses a C printf style format string to identify
the arguments and their types. Each argument is specified by a type identifier. Below is a list of the type
identifiers supported by LB_DispHelper.

Identifier Type

%d Long
%D Date (variant)
%u Ulong
%e Double
%b Boolean
%s String
%o IDispatch pointer
%p LPVOID - Use for HANDLEs, HWNDs.
%m Missing argument place-holder. Use when an omitted optional argument precedes a used optional
argument.

Therefore if you were calling a method with 3 arguments consisting of a string, long, and boolean the
syntax would be: ".MethodName(%s, %d, %b)".

When calling a method with no arguments the format string is omitted: ".MethodName".

The next method of Xzip we’ll need is

Sub UnPack(sArchive As String, sFolderPath As String, [
sPattern As String])

Extract contents of an archive to a folder.

 page 5 / 11

Liberty BASIC Programmer's Encyc

sArchive is the full path to the zip file.
sFolderPath is the path to the folder where the unzipped files will be placed.
Our wrapper:

Sub Zip.UnPack XZipObject, zip$, destination$
 Calldll #com, "dhCallMethod", XZipObject As Ulong, _
 ".UnPack(%s, %s)" As Ptr,_
 zip$ As Ptr, destination$ As Ptr, r As Long
End Sub

This next method of Xzip is different, and a little complicated. To use it requires an understanding of two
additional classes and their properties.

Function Contents(sArchive As String) As Items

Get a list of files and folders in the archive.

The obvious difference is that this is a function and returns a value. Not so obvious is the return type of
Items. Further examination of the Xzip documentation shows that Items is a class with two properties.
Class: Items

Property Count As Long
(read-only)
Returns the number of members in a collection.

Property Item(Index As Long) As Item
(read-only)
Returns a specific member of a collection by position.

Notice that the property Item has a return type of Item. The Xzip documentation shows that Item is also a
class, with five properties.

Class: Item

Property Date As Date
(read-only)
Last modified date.

Property Name As String
(read-only)
File name.

Property Path As String

 page 6 / 11

Liberty BASIC Programmer's Encyc

(read-only)
Relative Path.

Property Size As Long
(read-only)
File size in bytes.

Property Type As ItemType
(read-only)
Type of object.

This last property says it returns ItemType.
From the Xzip documentation:
Enum ItemType

Const tFolder = 1
Item is a folder.

Const tFile = 2
Item is a file.

Ok, ItemType is just a value of either 1 or 2.
Did you notice that the Date property has a return type of Date? The Date data type is a number that will
require further manipulations to become a human readable date and time. You will see how to do this a
little later in this tutorial.

What all of this is used for is to retrieve a list of files in the zip archive, their relative paths (if any) and
also some information about the files. We will need this information to show the user what’s in the zip file.
Starting with the function Contents, Contents returns a list of files and folders in the archive as Items. We
can deduce that Items is a collection from the description of it’s properties, so Contents returns an Items
collection. A collection is a group of objects, similar to an array. Items is a class so it will have it’s own
IDispatch pointer, and each member of the Items collection is an Item, also a class and also with a unique
IDispatch pointer. Each Item contains the information for one file or folder.

It's quite understandable if you are a bit confused at this point. If you are, then perhaps an analogy to a
window will help clarify things. Imagine that you have a program that displays a window. The window has
several buttons in it. In your program you write a function that gets all of the handles to the buttons and
puts them into an array. You name this function Contents because it puts the contents (button handles) of
the window into an array. You name this array Items because it contains the handles to each Item (button)
in the window. Then you write a routine that uses each button handle (Item) and lists the properties of that
button; the button text, width, height, position, etc. In short, you have a function (Contents) that gives you
an Items collection (the Items array), and each Item (button handle) in the collection represents a button in
the window. This is similar to what we are working with here.

 page 7 / 11

Liberty BASIC Programmer's Encyc

Listing Files in the Zip Archive
Now that we possess all of this information a course of action can be charted to list the files in the zip
archive:

1. Call Contents and get the IDispatch pointer to the Items collection.
2. Get the number of Item members contained in the Items collection from the Items Count property.
3. Get an IDispatch pointer for an Item in Items.
4. Get the file information from the Item properties.
5. Release the IDispatch pointer for this Item.
6. Repeat steps 3, 4, and 5 for every Item in Items.
7. Release the IDispatch pointer for Items.

Demo
Here is the code, step by step.

First we need to get a return value (the IDispatch pointer to Items) from the Contents method so we will
use the function dhGetValue from LB_DispHelper.

'Step 1. Call Contents and get the IDispatch pointer to the Items coll
ection object.
Calldll #com, "dhGetValue", _
 "%o" As Ptr, _
'The variable type to return. In this case
 _
'an IDispatch pointer to the Items collection. (Items object).
 comObj As Struct, _
'The struct to recieve this type of return.
 objZip As Ulong, _
'Our IDispatch pointer to Xzip, because Contents
 _ 'is a method of Xzip.
 ".Contents(%s)" As Ptr, _ 'The method being called,
 _ 'with one string argument specified.
 zipFile$ As Ptr, _ 'The argument, sArchive As String.
 r As Long 'LB_DispHelper return, 0 = success

objItems = comObj.obj.struct
'Get the returned IDispatch pointer to Items
 'from the struct and assign it to objItems.
comObj.obj.struct = 0 'Reset the struct value.

 page 8 / 11

Liberty BASIC Programmer's Encyc

'Step 2. Next we need to get the number of Item objects contained in
'the Items collection from the Items Count property.
count = GetValueLong(objItems, ".Count")

'Get each Item object from the Items collection.
'If the Item represents a file, get the file name, size, and path.
tFile = 2
For Idx = 1 To count
 'Step 3. Get the IDispatch pointer for Item (Idx)
 Calldll #com, "dhGetValue", _
 "%o" As Ptr, _ 'return an IDispatch pointer.
 comObj As Struct, _
'The struct to recieve this type of return
 objItems As Ulong, _ 'The IDispatch pointer to the object
 _ 'containing this method
 ".Item(%d)" As Ptr, _ 'The method being called,
 _ 'with one long argument specified.
 Idx As Long, _ 'The argument, Index number
 r As Long

 objItem = comObj.obj.struct: comObj.obj.struct = 0

 'Step 4. Get the file information from the Item properties.
 If GetValueLong(objItem, ".Type") = tFile Then 'it’s a file
 fileName$ = GetValueStr$(objItem, ".Name")
 fileTime$ = GetValueDateTime$(objItem, ".Date")
 fileSize = GetValueLong(objItem, ".Size")
 filePath$ = GetValueStr$(objItem, ".Path")
 End If

'Step 5. We're done with this Item object, release it's IDispatch poin
ter.
 Call SetNothing objItem
Next Idx

'Step 6. We're done with the Items object, release it's IDispatch poin
ter.
Call SetNothing objItems
The routine above uses the following three support functions. All thre
e support functions use the dhGetValue function from LB_DispHelper.

Function GetValueLong(Object, method$)
 Calldll #com, "dhGetValue", _
 "%d" As Ptr, _ 'Return a long

 page 9 / 11

Liberty BASIC Programmer's Encyc

 LVAL As Struct, _ 'The struct to recieve this type of return
 Object As Ulong, _ 'The IDispatch pointer to the object
 _ 'containing this method
 method$ As Ptr, _
'The method being called, with no arguments
 r As Long 'LB_DispHelper return, 0 = success

 GetValueLong = LVAL.x.struct
 LVAL.x.struct = 0
End Function

Function GetValueStr$(Object, method$)
 Calldll #com, "dhGetValue", _
 "%s" As Ptr, _ 'Return a string
 STRVAL As Struct, _ 'The struct to recieve this type of return
 Object As Ulong, _ 'The IDispatch pointer to the object
 _ 'containing this method
 method$ As Ptr, _
'The method being called, with no arguments
 r As Long 'LB_DispHelper return, 0 = success

 x=STRVAL.x.struct 'Get the pointer to the string
 GetValueStr$ = Winstring(x) 'Retrieve the string

 'Free the memory containing the string,
 'this must be done to prevent memory leaks.
 Calldll #com, "FreeString", x As Ulong, r As Void
 STRVAL.x.struct = ""
End Function

Function GetValueDateTime$(Object, method$)
 TIME.NOSECONDS = 2

 Struct DT, x As Double
'A local struct guarantees a 0 starting value

 Struct st, _ 'SYSTEMTIME
 wYear As Word, _
 wMonth As Word, _
 wDayOfWeek As Word, _
 wDay As Word, _
 wHour As Word, _
 wMinute As Word, _
 wSecond As Word, _

 page 10 / 11

Liberty BASIC Programmer's Encyc

 wMilliseconds As Word

 'Get the file date and time
 Calldll #com, "dhGetValue", _
 "%D" As Ptr, _ 'Return a variant Date
 DT As Struct, _ 'The struct to recieve this type of return
 Object As Ulong, _
'The IDispatch pointer to the object containing this
 _ 'method
 method$ As Ptr, _
'The method being called, with no arguments
 r As Long 'LB_DispHelper return, 0 = success
 vtDate = DT.x.struct

 'Convert the vtDate value into a human readable date and time.

 'Fill the systemtime structure using the vtDate value.
 Calldll #ole, "VariantTimeToSystemTime", vtDate As Double, _
 st As Struct, r As Long

 'Get a date string in the same format as used on this machine.
 dtBuf$ = Space$(50)
 Calldll #kernel32, "GetDateFormatA",
 _LOCALE_SYSTEM_DEFAULT As Ulong, _
 _NULL As Ulong, st As Struct, _NULL As Ulong, dtBuf$ As Ptr,
50 As Long, _
 r As Long
 dt$ = Left$(dtBuf$, r-1)

 'Get a time string, without seconds,
 'in the same format as used on this machine.
 dtBuf$ = Space$(50)
 Calldll #kernel32, "GetTimeFormatA",
 _LOCALE_SYSTEM_DEFAULT As Ulong, _
 TIME.NOSECONDS As Ulong, st As Struct, _NULL As Ulong,
 dtBuf$ As Ptr, _
 50 As Long, r As Long
 tm$ = Left$(dtBuf$, r-1)

 GetValueDateTime$ = dt$ + " " + tm$
End Function

That's enough to digest for now. In Part 2 we will build a simple Zip application that puts this information
to good use. Until then I hope you will help yourself to the LB_DispHelper ActiveX tools and read the
LB_DispHelper help file.

Powered by TCPDF (www.tcpdf.org)

 page 11 / 11

http://www.tcpdf.org

	ActiveX1

