Liberty BASIC Programmer's Encyc

Using ActiveX DLLs in Liberty BASIC

Part 1
Originally published in NL 130.

DennisMcK

Using ActiveX DLLs in Liberty BASIC | Using an ActiveX DLL | Registering the DLL | Code to Use the
DLL | Difference from Normal DLLs | Using the ActiveX DLL with L.LB_DispHelper | Listing Files in the

Zip Archive | Demo

Using an ActiveX DLL
This tutorial will attempt to explain how to use an AciveX dll with Liberty BASIC and LB_DispHelper.

The subjects covered are:

. Registering an ActiveX dIl.

. Initializing COM.

. Uninitializing COM.

. How to obtain the ProgID of the ActiveX dIL.

. Getting the IDispatch pointer to the ActiveX dll.

. Releasing the IDispatch pointer to the ActiveX dll.

. Calling the methods in the AciveX dll.

. Getting return values from the ActiveX dll methods.

. How to work with classes (coclasses) in the ActiveX dll.
. Working with variant Dates.

O O 0NN N W

p—

LB_DispHelper is based on DispHelper, a free open source C library developed by xtmouse. DispHelper
provides the necessary functions for interfacing with COM. The home of DispHelper is
http://disphelper.sourceforge.net . The library cannot be used as-is with Liberty BASIC because itis a C
library and uses unicode strings which LB does not support at this time. LB_DispHelper.dll was created to
make DispHelper compatible with Liberty BASIC. Interfacing functions for some of the C library routines
were added and modifications were made to convert strings from ansi to unicode and back. Variants are
converted to the correct variable type within the library. It should be noted that ActiveX controls cannot be
used with DispHelper at this time. The complete set of free LB_DispHelper ActiveX tools may be found
at The Liberty Belle.

Download DLL and documentation here:

ActiveX Demo.zip

¢ Details
e Download
e 0] KB

page 1 /11

https://www.wikispaces.com/user/view/DennisMcK
https://www.wikispaces.com/user/view/DennisMcK
http://disphelper.sourceforge.net
/file/view/ActiveX%20Demo.zip/236295120/ActiveX%20Demo.zip
/file/view/ActiveX%20Demo.zip/236295120/ActiveX%20Demo.zip
/file/detail/ActiveX%20Demo.zip
/file/view/ActiveX%20Demo.zip/236295120/ActiveX%20Demo.zip

Liberty BASIC Programmer's Encyc

The ActiveX dll used in this tutorial is Xzip.dll from http://www.xstandard.com . Xzip provides industry
standard zip and unzip abilities for your application. This dll was chosen because it is fairly simple to
implement and is well documented.

Registering the DLL

Before you can use an ActiveX dll it must registered with regsvr32.exe. The dll should be installed into a
folder that will be its permanent location. If the dll is moved to a different folder after it's registered it will
no longer work. If you decide to rename the folder it occupies or move it to a new location it must be
unregistered first, then registered again after it is moved.

To register the dll:

1. Move the dIl to a directory like: "C:\Program Files\XStandard\Bin\".

2. Open a command prompt and cd to the directory where the dll is located.

3. Type regsvr32 XZip.dll

To unregister the dll:
1. Open a command prompt and cd to the directory where the dll is located.
2. Type regsvr32 -u XZip.dll

With some systems you may need to type the full path to both regsvr32 and XZip.

Code to Use the DLL

Now that the dll is registered we can begin writing some code to use it. The LB_DispHelper.dll functions
that are used will be explained as we progress. Most of the dll functions return pointers or take pointers to
variables so structures are used within the program for this purpose.

Struct conmbj, obj As Uong 'for receiving pointers to COM objects
Struct LVAL, x As Long
"for receiving nuneric returns (long integers)
"from COM net hods
Struct STRVAL, x As Ptr
"for receiving string returns from COM net hods

To use COM it must be initialized, and when the program is finished it must be Uninitialized. Since
LB_Disphelper and oleaut32.dll should also be opened and closed at these same times, a couple of subs
can be used to simplify things.

page 2/ 11

http://www.xstandard.com

Liberty BASIC Programmer's Encyc

"Call at the start of the program
"Opens LB dispHel per, initializes COM
"and turns on DispHel per error reporting.
Sub Begi nCOM
Open "ol eaut32.dl 1" For DI As #ole
"Required for variant Date conversion.
Open "LB di spHel per.dll" For DIl As #com
Calldll #com "dhlnitializeConi, FALSE As Long, r As Long
Calldll #com "dhToggl eExceptions”, 1 As Long, r As Long
End Sub

"Call at the end of the program

'Cl oses LB dispHel per, uninitializes COM

Sub EndCOM
Cl ose #ole
Calldll #com "Uninitialize COM', 1 As Long, r As Void
Cl ose #com

End Sub

Difference from Normal DLLs

In Liberty BASIC, dlls are normally opened with 'Open "this.dll" for dll as #x', but this will not work with
AcitiveX dlls. Instead, an IDispatch pointer for the AcitiveX dll must be obtained. Don’t worry about what
an IDispatch pointer is, it’s a number similar to a function pointer or a window handle and it's used to
identify a COM object in your program. To get this pointer you must know the
VersionIndependentProgID or ProgID for the ActiveX dll. This is a string that should be provided by the
ActiveX developer but in many cases it isn't. In cases where the ActiveX dll has a both a ProgID and an
VersionlndependentProgID, you should use the VersionIndependentProgID. The Xzip API reference lists
it as "XStandard.Zip".

If you use a dll that isn't documented or doesn't give you the one of the ProgIDs you can use the
LB_DispHelper Object Browser to create your own documentation.

Now that we know the ProgID we can get the IDispatch pointer. This next function will take care of this.

objZip = CreateObject("XStandard.Zip")

‘Create an instance of Obj Nanme$ on the | ocal machine
Function Creat eObj ect (Qoj Nane$)
Cal I dlI | #com "dhCreateObject", ObjName$ As Ptr, _NULL As Long,
combbj As Struct, r As U ong
Creat ebj ect = combj.obj.struct
comObj . obj.struct =0
End Function

This is very important, every object (IDispatch pointer) obtained must also be released before your

page 3/ 11

Liberty BASIC Programmer's Encyc

program ends. Again, a simple sub can be used.

Sub Set Not hi ng Obj ect
Calldl'l #com "dhRel easeject”, hject As Uong, r As Void
End Sub

To release the objZip IDispatch pointer:

Cal | Set Not hing objZip

Using the ActiveX DLL with LB_DispHelper

Now we can move on to using the ActiveX dll. It's common for the methods in these dlls to use optional
arguments and LB_DispHelper uses methods that allow for a variable number of arguments. The
documentation for Xzip lists all of the subs, functions, classes, properties, and constants that can be used.
This tutorial only uses a few of them.

The first one we will examine is

Sub Pack(sFilePath As String, sArchive As String, |
bSt orePath As Bool ean = Fal se], [sNewPath As String], |
| Conpr essi onLevel As Long = -1])
Add file or folder to
an archive. Conpression level 1 is mnimm Ilevel 9
is maxi mum all other values default to |evel 6.

sFilePath is the path to the file to be added to the zip file.
sArchive is the full path to the zip file.

The arguments within brackets [] are optional. To call this sub from LB we use the dhCallMethod
function in LB_DispHelper. dhCallMethod is used to call methods that do not return values, in other
words, Subs. For now we will ignore the optional arguments and only use sFilePath As String, and
sArchive As String.

Sub Zip. Pack XZi pQbject, src$, zip$
Calldll #com "dhCal |l Met hod", XZi pGbject As U ong,
".Pack(%, %)" As Ptr, _
src$ As Ptr, zip$ As Ptr, r As Long

page 4/ 11

Liberty BASIC Programmer's Encyc

End Sub

Examine this breakdown of the above call to dhCallMethod.

Cal I dlI | #com "dhCal |l Method",
XZi pCbj ect As U ong, _

"The | Di spatch pointer of the COM object.
_ "In this case obj Zip.
".Pack(%, %)" As Ptr, _

"W are calling sub Pack with two string argunents.

src$ As Ptr, _ "Arg 1. sFilePath As String.
zip$ As Ptr, _ "Arg 2: sArchive As String.
r As Long "LB_Di spHel per return, 0 = success.

The second argument to dhCallMethod specifies the method name that is being called along with the types
of the arguments for sub Pack. ".Pack(%s, %s)". DispHelper uses a C printf style format string to identify
the arguments and their types. Each argument is specified by a type identifier. Below is a list of the type
identifiers supported by LB_DispHelper.

Identifier Type

9%d Long

%D Date (variant)

90u Ulong

%e Double

%b Boolean

%s String

%o IDispatch pointer

90p LPVOID - Use for HANDLEs, HWNDs.

%m Missing argument place-holder. Use when an omitted optional argument precedes a used optional
argument.

Therefore if you were calling a method with 3 arguments consisting of a string, long, and boolean the
syntax would be: ".MethodName(%s, %d, %b)".

When calling a method with no arguments the format string is omitted: ".MethodName".

The next method of Xzip we’ll need is

Sub UnPack(sArchive As String, sFolderPath As String, |
sPattern As String])

Extract contents of an archive to a folder.

page 5/ 11

Liberty BASIC Programmer's Encyc

sArchive is the full path to the zip file.
sFolderPath is the path to the folder where the unzipped files will be placed.
Our wrapper:

Sub Zi p. UnPack XZi pObj ect, zip$, destination$
Calldll #com "dhCall Met hod", XZi pCbject As U ong,
".UnPack(%, %)" As Ptr, _
zip$ As Ptr, destination$ As Ptr, r As Long

End Sub

This next method of Xzip is different, and a little complicated. To use it requires an understanding of two
additional classes and their properties.

Function Contents(sArchive As String) As Itens
Get a list of files and folders in the archive.

The obvious difference is that this is a function and returns a value. Not so obvious is the return type of
Items. Further examination of the Xzip documentation shows that Items is a class with two properties.
Class: Items

Property Count As Long
(read-only)
Returns the number of members in a collection.

Property Item(Index As Long) As Item
(read-only)
Returns a specific member of a collection by position.

Notice that the property Item has a return type of Item. The Xzip documentation shows that Item is also a
class, with five properties.

Class: Item

Property Date As Date
(read-only)

Last modified date.
Property Name As String
(read-only)

File name.

Property Path As String

page 6/ 11

Liberty BASIC Programmer's Encyc

(read-only)
Relative Path.

Property Size As Long
(read-only)
File size in bytes.

Property Type As ItemType
(read-only)
Type of object.

This last property says it returns ItemType.
From the Xzip documentation:
Enum ItemType

Const tFolder = 1
Item is a folder.

Const tFile = 2
Item is a file.

Ok, ItemType is just a value of either 1 or 2.

Did you notice that the Date property has a return type of Date? The Date data type is a number that will
require further manipulations to become a human readable date and time. You will see how to do this a
little later in this tutorial.

What all of this is used for is to retrieve a list of files in the zip archive, their relative paths (if any) and
also some information about the files. We will need this information to show the user what’s in the zip file.
Starting with the function Contents, Contents returns a list of files and folders in the archive as Items. We
can deduce that Items is a collection from the description of it’s properties, so Contents returns an Items
collection. A collection is a group of objects, similar to an array. Items is a class so it will have it’s own
IDispatch pointer, and each member of the Items collection is an Item, also a class and also with a unique
IDispatch pointer. Each Item contains the information for one file or folder.

It's quite understandable if you are a bit confused at this point. If you are, then perhaps an analogy to a
window will help clarify things. Imagine that you have a program that displays a window. The window has
several buttons in it. In your program you write a function that gets all of the handles to the buttons and
puts them into an array. You name this function Contents because it puts the contents (button handles) of
the window into an array. You name this array Items because it contains the handles to each Item (button)
in the window. Then you write a routine that uses each button handle (Item) and lists the properties of that
button; the button text, width, height, position, etc. In short, you have a function (Contents) that gives you
an Items collection (the Items array), and each Item (button handle) in the collection represents a button in
the window. This is similar to what we are working with here.

page 7/ 11

Liberty BASIC Programmer's Encyc

Listing Files in the Zip Archive

Now that we possess all of this information a course of action can be charted to list the files in the zip
archive:

. Call Contents and get the IDispatch pointer to the Items collection.

. Get the number of Item members contained in the Items collection from the Items Count property.
. Get an IDispatch pointer for an Item in Items.

. Get the file information from the Item properties.

. Release the IDispatch pointer for this Item.

. Repeat steps 3, 4, and 5 for every Item in Items.

. Release the IDispatch pointer for Items.

NN RN -

Demo
Here is the code, step by step.

First we need to get a return value (the IDispatch pointer to Items) from the Contents method so we will
use the function dhGetValue from LB_DispHelper.

"Step 1. Call Contents and get the IDi spatch pointer to the Itens coll
ection object.
Calldll #com "dhGet Val ue",
"%0" As Ptr, _
"The variable type to return. In this case

"an | Dispatch pointer to the Itens collection. (ltens object).
combbj As Struct, _
"The struct to recieve this type of return.
obj Zip As U ong,
"Qur | Dispatch pointer to Xzip, because Contents
"is a nmethod of Xzip.

".Contents(%)" As Ptr, _ 'The nmethod being called,

_ "with one string argunent specified.
zipFile$ As Ptr, _ " The argunent, sArchive As String.
r As Long "LB_Di spHel per return, 0 = success

objltems = conObj . obj.struct
"Cet the returned | Dispatch pointer to Itens

"fromthe struct and assign it to objltens.
contbj . obj.struct =0 'Reset the struct val ue.

page 8/ 11

Liberty BASIC Programmer's Encyc

"Step 2. Next we need to get the nunmber of Item objects contained in
"the Itens collection fromthe Itens Count property.
count = GCet Val ueLong(objltens, ".Count")

"CGet each Itemobject fromthe Itens collection.
"If the Itemrepresents a file, get the file nane, size, and path.
tFile = 2
For 1dx = 1 To count
"Step 3. Get the ID spatch pointer for Item (Idx)
Calldll #com "dhGetVval ue", _
"%" As Ptr, _ "return an | Dispatch pointer.
contbj As Struct,
"The struct to recieve this type of return

objltenms As Uong, _ 'The IDi spatch pointer to the object
_ ‘containing this nethod

".Item(%l)" As Ptr, _ 'The nethod being call ed,
_ "with one | ong argunent specified.

| dx As Long, _ ' The argunent, | ndex nunber

r As Long

objltem = contbj.obj.struct: combj.obj.struct =0

"Step 4. Get the file information fromthe Item properties.
| f GetVal ueLong(objltem ".Type") =tFile Then '"it's a file
fileName$ = GetVal ueStr$(objltem ".Nane")
fileTime$ = GetVal ueDat eTi ne$(objltem ".Date")
fileSize = GetVal ueLong(objltem ".Size")
filePath$ = GetVal ueStr$(objltem ".Path")
End I f

"Step 5. We're done with this Itemobject, release it's ID spatch poin
ter.

Call Set Nothing objltem
Next | dx

"Step 6. We're done with the Itens object, release it's IDi spatch poin
ter.

Call Set Nothing objltens

The routine above uses the follow ng three support functions. Al thre
e support functions use the dhGetVal ue function from LB _Di spHel per.

Function Get Val ueLong(oj ect, nethod$)
Calldll #com "dhGetVal ue", _
"od" As Ptr, _ "Return a | ong

page 9/ 11

Liberty BASIC Programmer's Encyc

LVAL As Struct, _ "The struct to recieve this type of return
bject As Uong, _ 'The ID spatch pointer to the object
‘containing this nethod
met hod$ As Ptr, _
" The nethod being called, with no argunents
r As Long "LB_Di spHel per return, 0 = success

Get Val ueLong = LVAL. x. struct
LVAL. x. struct =0
End Function

Function GetVal ueStr$(oj ect, nethod$)
Calldll #com "dhGetVal ue",

"0%8" As Ptr, _ 'Return a string
STRVAL As Struct, _ 'The struct to recieve this type of return
object As Uong, _ 'The ID spatch pointer to the object

‘containing this nethod
met hod$ As Ptr,
" The nethod being called, with no argunents
r As Long "LB _Di spHel per return, 0 = success

Xx=STRVAL. x. struct "Cet the pointer to the string
Get ValueStr$ = Wnstring(x) 'Retrieve the string

"Free the nmenory containing the string,
"this must be done to prevent nenory | eaks.
Calldll #com "FreeString", x As Uong, r As Void
STRVAL. x.struct = ""

End Function

Functi on Get Val ueDat eTi ne$(Qoj ect, net hod$)
TI ME. NOSECONDS = 2

Struct DT, x As Doubl e
"A local struct guarantees a 0 starting val ue

Struct st, _ ' SYSTEMII ME
wYear As Word, _

wivbnth As Wrd,
wDayOf Week As Wor d,

wDay As Word, _

wHour As Word, _

WM nute As Wrd,

wSecond As Wrd,

page 10/ 11

Liberty BASIC Programmer's Encyc

wM | |iseconds As Word

"Cet the file date and tine
Calldll #com "dhGCetVal ue", _
"' As Ptr, _ "Return a variant Date
DT As Struct, _ "The struct to recieve this type of return
hj ect As U ong,
"The I Dispatch pointer to the object containing this
_ " met hod
met hod$ As Ptr, _
" The nethod being called, with no argunents
r As Long "LB_Di spHel per return, 0 = success
vt Date = DT. x. struct

"Convert the vtDate value into a human readabl e date and ti ne.

"Fill the systentine structure using the vtDate val ue.
Calldll #ole, "VariantTi meToSystenili ne", vtDate As Doubl e,
st As Struct, r As Long

"Get a date string in the sane format as used on this machine.
dt Buf $ = Space$(50)
Cal I dI' | #kernel 32, "Cet DateFormat A",
_LOCALE_SYSTEM DEFAULT As U ong,
_NULL As U ong, st As Struct, _NULL As U ong, dtBuf$ As Ptr,
50 As Long, _
r As Long
dt$ = Left$(dtBuf$, r-1)

"CGet atine string, wthout seconds,
"in the sane format as used on this machine.
dt Buf $ = Space$(50)
Cal I dI' I #kernel 32, "GetTi neFormat A",
_LOCALE_SYSTEM DEFAULT As U ong, _
Tl ME. NOSECONDS As U ong, st As Struct, _NULL As U ong,
dtBuf$ As Ptr, _
50 As Long, r As Long
tnd = Left$(dtBuf$, r-1)

Get Val ueDateTine$ = dt$ + " " + tnh
End Functi on

That's enough to digest for now. In Part 2 we will build a simple Zip application that puts this information
to good use. Until then I hope you will help yourself to the LB_DispHelper ActiveX tools and read the
LB_DispHelper help file.

page 11 /11

http://www.tcpdf.org

	ActiveX1

