Liberty BASIC Programmer's Encyc

Using an Arduino as a Slave Board

Arduino serial interfacing and basic function library

Table of Contents

Using an Arduino as a Slave Board

Getting Started with the functions

-Initialization code

-Setting a pin Status

-Pulling the input status of a pin

-Setting a PWM output

-Pulling the PWM input status of a pin

-Setting a servo output

-Managing Pin Settings

-Set and retrieve all pin settings and values at once
-Closing your program gracefully closing all the com ports
The Arduino Code

The Liberty Basic Demo

Just the Library and function descriptions

Credits and thank yous

By Mike Molianri

Home automation, Robots, Vending machines. What do they have in

common?

page 1/33

Liberty BASIC Programmer's Encyc

The answer is computers controlling hardware. Making lights go on and off. Controlling motors, relays and
other electronic components.

Liberty Basic for windows makes programming simple but lacks the ability to directly control or interface
with hardware (except the parallel port).

To make hardware interface coding simpler a set of functions is required to facilitate the communication
with external hardware. Because the arduino is the most widely used hobby micro controller in the world
and has so much support it is the obvious choice to make a set of simple functions for LB users to take
advantage of this great platform for there projects.

If you are a complete novice and have no Arduino experience you might check out this beginners article.
http://Ibpe.wikispaces.com/Fun+with+the+Arduino

The things covered in this article are limited to simple port I/O (Input and output).

e Test if pin is high or low
o Get input from buttons and other sensors connected to the arduino
Set a pin high or low
o Turn things on and off like lights, buzzers, motors, ect.
PWM (Pulse width modulation) output
o Dim lights, Control servo motors, interface with variable speed motor controllers
PWM (Pulse width modulation) input
o Get input from things like sliders and position information

Getting Started with the functions

Code Example Circuit

-Initialization code
This code sets up the arrays that will be used to
manage pin settings and values.

Should be placed at start of program.

di m ad. pi nstat us(10, 100) di m ad. pi nS
etting$(10,100)for x = 0 to 10 f
or y =0to 100 ad. pi nSetting
$(x,y) = "Un-Set" next ynext x

-Setting a pin Status

To set a pin high or low you can call the following

page 2/ 33

http://lbpe.wikispaces.com/Fun+with+the+Arduino

Liberty BASIC Programmer's Encyc

function.

The com port must be specified as a number (To
address com3 you would use 3)

The pin must be a number of a pin present on the
arduino.

The value to send must be a 1 or O (1 = high, 0 =
low)

The return value will be a 1 if successful and 0 if not.

return.value = AD. Set (Com port, Pin
, Val . To. Send)

-Pulling the input status of a pin

This function will retrieve a 1 or 0 depending on
what the status of a sensor connected to the arduino
is.

The com port must be specified as a number (To
address com3 you would use 3)

The pin must be a number of a pin present on the
arduino.

Will return a 1 or a 0 depending on if the input pin is
pulled high or low.

return.value = AD. Get (Com port. Sel e
ction, Pin.Selection)

-Setting a PWM output

PWM Will allow you to control a servo, dim a light,
ect.

The com port must be specified as a number (To
address com3 you would use 3)

The pin must be a number of a pin present on the
arduino.

The value must be a number between 0 and 254.

return.value = AD. PMM Qut (Com port.
Sel ection, Pin.Selection, Val.To.Se
nd)

-Pulling the PWM input status of a pin

The com port must be specified as a number (To
address com3 you would use 3)
The pin must be a number of a pin present on the

page 3 /33

Liberty BASIC Programmer's Encyc

arduino.
The return value will be number between 0 and 254.

return.value = AD. PMM I n(Com port. S
el ection, Pin.Selection)

-Setting a servo output

Will allow you to control a servo.

The com port must be specified as a number (To
address com3 you would use 3)

The pin must be a number of a pin present on the
arduino.

The value must be a number between 0 and 180, the
number of degrees the servo will rotate to.

return. val ue = AD. Servo(Com port. Se
| ection, Pin.Selection, Val.To.Send

)
-Managing Pin Settings

There are 2 arrays that manage what a pin is set to
(set, get, pwm.in, pwm.out, servo) and what the last
value assigned to that pin was or retrieved from the
device as an input pin.

With these arrays to can both retrieve the current pin
value and setting. You can also set the value and pin
setting. In this way you can update the values and
settings for a group of pins and apply those settings
all at once with the

val ue. pin.was. set.to = ad. pi nstatus
(Com port, Pin)

-Set and retrieve all pin settings and
values at once

The AD.Update.All() function will use the 2 arrays
that are defined at the start of the program and
update the values of each pin based on the inputs
from the arduino and also set the output values on the
arduino device.

page 4/ 33

Liberty BASIC Programmer's Encyc

This allows for all the pins of all the connected
arduino devices to be updated to the values from the
ad.pinstatus() array and the pin type setting from the
ad.pinSetting$() array.

bla = AD. Update. Al'l ()
-Closing your program gracefully closing
all the com ports

This function will close all the open com ports as a
com port is kept open after any interaction with the
arduino module.

AD. cl ose. al |l . the.com ports()

The Arduino Code

To make liberty basic talk with an arduino they have to speak the same language.
In this case a string is used and sent over to the device followed by a carriage return character CHR$(13)

The only thing you really have to understand about the arduino code is that it must be download to the
arduino board using the arduino IDE.
This can be download from the following link.

http://arduino.cc/en/Main/Software

Note: This code is written in the Arduino's special form of ¢ and is not basic code.

#i ncl ude <Servo. h>

/1 Buffer to store incom ng conmands from serial port
String inData,;

page 5/33

http://arduino.cc/en/Main/Software

Liberty BASIC Programmer's Encyc

// decl are each of the servos as a variable of type servo
Servo LBServol
Servo LBServoZ;
Servo LBServo3;
Servo LBServo4,
Servo LBServo5;
Servo LBServo6;
Servo LBServo7,
Servo LBServoS;
Servo LBServo9;
Servo LBServolO;
Servo LBServoll
Servo LBServol2;

void setup() {

Seri al . begi n(9600) ;

Serial.println("Serial conection started, waiting for instructions..
")
}

void | oop() {
while (Serial.available() > 0)

{

char recieved = Serial.read();
i nData += recieved,

/'l Process nessage when new | ine character is recieved

if (recieved == '\n")

{
String ParanD = getVal ue(inbData, ' ', 0);
String Paraml = getValue(inbData, ' ', 1);
String Paran? = getValue(inData, ' ', 2);
String ParanB8 = getValue(inbData, ' ', 3);
String Param} = getVal ue(inbData, ' ', 4);
String Paranb = getValue(inData, ' ', 5);
inData = "";

nt val ParanD = ParanD.tolnt();
nt val Paranml = Paraml.tolnt();
nt val ParanR = ParanR.tolnt();
nt val ParanB8 = Paran8.tolnt();
nt val Paramd = Paramd.tolnt();
nt val Paranb = Paranb.tolnt();

page 6 /33

Liberty BASIC Programmer's Encyc

[l Serial.print(val Paran0);
[/ Serial.print(val Parant);
[l Serial.print(val Paran®);
/1 Serial.print(val ParanB);
[l Serial.print(val Parany);
/1 Serial.print(val Paranb);

if (ParanD == "get")

{

}

pi nMbde(val Paramil, | NPUT);

Serial .println(digital Read(val Parantl));

if (ParanD == "set")

{

pi nMbde(val Paranll, OUTPUT);
digital Wite(val Paraml, val Paran®);
Serial.println("1");

if (Para == "pwm out ")

{

anal ogWite(val Paranil, val Paran®);
Serial.println("1");

if (ParanD == "pwmin")

{
}

Serial . println(anal ogRead(val Paraml)) ;

if (ParanD == "servo")

{

switch (val Paraml) {

page 7/ 33

Liberty BASIC Programmer's Encyc

case

case

case

case

case

case

case

case

case

case

10:

LBServol. attach(1);
LBServol. write(val Paran®);
Serial.println("1");

br eak;

LBServo2. attach(2);
LBServo2. write(val Paran®);
Serial.println("1");

br eak;

LBServo3. attach(3);
LBServo3. wite(val Paran?);
Serial.println("1");

br eak;

LBServo4. attach(4);
LBServo4. wite(val Paran®);
Serial.println("1");

br eak;

LBServo5. attach(5);
LBServo5. wri te(val Paran?);
Serial.println("1");

br eak;

LBServo6. attach(6);
LBServo6. write(val Paran®);
Serial.println("1");

br eak;

LBServo5. attach(7);
LBServo7.wite(val Paran?);
Serial.println("1");

br eak;

LBServo8. attach(8);
LBServo8. write(val Paran®);
Serial.println("1");

br eak;

LBServo9. attach(9);
LBServo9. write(val Paran?);
Serial.println("1");

br eak;

page 8 /33

Liberty BASIC Programmer's Encyc

LBServol0. attach(10);
LBServol0. wite(val Paran®);
Serial.println("1");
br eak;

case 11:
LBServoll. attach(11);
LBServoll. wite(val Paran®);
Serial.println("1");
br eak;

case 12:
LBServol2. attach(12);
LBServol2. wite(val Parant);
Serial.println("1");
br eak;

String getValue(String data, char separator, int index)

{
int found = O;
int strindex[] = {

0, -1
1
int maxl ndex = data.length() - 1;
for (int i = 0; i <= maxlndex && found <= index; i++) {
if (data.charAt(i) == separator || i == maxlndex) {
f ound++;
strindex[0] = strlndex[1] + 1;
strindex[1l] = (i == maxlndex) ? i + 1 : i;
}
}

return found > i ndex ? data.substring(strlndex[0], strlndex[1])

page 9/ 33

Liberty BASIC Programmer's Encyc

The Liberty Basic Demo

The demo program shows off the basic functionality
of the library.

The Com port that the arduino is on must be placed
in the com port number text box.

A pin must be selected and a value to send must be
entered.

The 4 buttons on the right are used to execute the
functions.

The return value is populated by the what is returned
by the arduino.

di m ad. pi nst at us(10, 100)
di m ad. pi nSet ti ng$(10, 100)

for x = 0to 10
for y =0 to 100
ad. pi nSetting$(x,y) = "Un-Set"
next vy
next X

"Popul ate pin |ist
dim pins$(100)
for x = 0to 13
pi ns$(x) = str$(x)
next x

" Popul ate com port drop down
di m Conm Port s$(10)
for x =0 to 10
Comm Ports$(x) = str$(x)
next x

"nonmai nwi n

page 10/33

Liberty BASIC Programmer's Encyc

W ndowwW dt h = 450

W ndowHei ght = 445

Upper Lef t X=i nt ((D spl ayW dt h- W ndowW dt h) / 2)
Upper Left Y=i nt ((Di spl ayHei ght - W ndowHei ght)/ 2)

| i stbox #mai n. PinSel ector, pins$(, [|istbox1Doubl ed i ck], 10, 8
2, 40, 320

| i stbox #main.PinSetting, pin.Settings$(, [set.pin.settings], 50
, 82, 40470, 320

| i st box #main. Pi nStatuses, pin.statuses$(, [set.pin.output], 90+
70, 82, 50, 320

20

70,

70,

25

25

170

300

, 2

32

statictext #main.statictext2, "Pin", 10, 62, 40, 20
statictext #main.statictext50, "Setting", 50, 62, 40, 20
statictext #main.statictext55, "Value", 90+70, 62, 40, 20

t ext box #nmi n. Val ToSend, 165+70, 32, 170, 25
statictext #main.statictext4, "Value To Send", 165+70, 12, 170,

statictext #main.statictext5, "Return Value", 165+70, 62, 175, 2

t ext box #mai n. ReturnVal ue, 165+70, 82, 170, 25

button #main. button7,"Set Pin H gh/Low Status",[Set.Pin], UL, 165+
117, 170, 25

button #main.button8,"Get Pin H gh/Low Status",[Get.Pin], UL, 165+
152, 170, 25

button #mai n. button9, "PW Qut put”,[P\WWM Qut], UL, 165+70, 187, 170,

button #mai n. buttonl0,"PWM I nput”",[PWM In], UL, 165+70, 222, 170,

button #main. buttonll, "Servo Qut",[Servo.out], UL, 165+70, 222+35,
, 25

button #main. buttonll, "Update Al Pins",[Update.Pins], UL, 165+70,

, 170, 25

statictext #main.statictextll, "Com Port Nunber", 10, 12, 145+70
0

conbobox #mai n. ComPort No, Comm Ports$(), [update.pin.info], 10,
, 130+70, 25

open "LB Utra Sinple Arduino Denp" for dialog as #main
print #main, "trapclose [quit.min]"
wai t

page 11/33

Liberty BASIC Programmer's Encyc

[set

. pin.settings]

gosub [Get. The. Sel cti ons. And. Text boxes. Fr om Mai n. W n]

print #main.PinSetting, "selectionindex? index"
index = index - 1

Di m pi n.setting. options$(100)
pi n.setting.options$(1l) = "set"

pi n.setting.options$(2) = "get"
pin.setting.options$(3) = "pwmout"
pi n.setting.options$(4) = "pwmin"
pin.setting.options$(5) = "servo"

W ndowW dth = 195

W ndowHei ght = 120

Upper Lef t X=i nt ((Di spl ayW dt h- W ndowW dt h) / 2)
Upper Left Y=i nt ((Di spl ayHei ght - W ndowHei ght)/ 2)

conbobox #Pi nSetting. Sel ection, pin.setting.options$(, [Pin.Settin
g. Done] , 15, 27, 160, 125

statictext #PinSetting.statictext2, "Select Pin Setting”, 15, 7
, 170, 20

button #Pi nSetting. button3, "Done",[Pin.Setting. Done], UL, 15, 57

, 160, 25

wai t

open "Pin Setting" for dialog as #PinSetting
print #PinSetting, "font ns_sans_serif 10"

print #PinSetting, "trapclose [Pin.Setting.Done]"

[Pin. Setting. Done]

[set

print #PinSetting.Selection, "contents? text$"

ad. pinSetting$(Com port. Sel ection, index) = text$

cl ose #PinSetting
goto [Updat e. Pi ns]

. pi n. out put]

gosub [Get. The. Sel cti ons. And. Text boxes. Fr om Mai n. W n]

page 12/33

Liberty BASIC Programmer's Encyc

print #main.PinStatuses, "selectionindex? index"

index = index - 1
i f ad.pinSetting$(Com port. Selection, index) = "set" then
"this code will flip the curent pin status fromtrue to fal se

and vice versa
i f ad. pinstatus(Com port. Selection, index) = 1 then
ad. pi nstatus(Com port. Sel ection, index) =0

el se
ad. pi nstatus(Com port. Sel ection, index) =1
end if
end if
i f ad.pinSetting$(Com port. Selection, index) = "pwmout" then

PROVPT "Val ue to set and send"; val ue
ad. pi nstatus(Com port. Sel ection, index) = val ue
end if

i f ad.pinSetting$(Com port. Sel ection, index) = "servo" then
PROWPT "Val ue to set and send"; val ue
ad. pi nst at us(Com port. Sel ection, index) = val ue

end if

got o [Updat e. Pi ns]

[Set . Pi n]

gosub [Get. The. Sel cti ons. And. Text boxes. From Mai n. W n]

return.value = AD. Set (Com port. Sel ection, Pin.Selection, Val.To.Se
nd)

print #main. ReturnVal ue, return.val ue

got o [update. pi n.inf o]

[Get. Pin]
gosub [Get. The. Sel cti ons. And. Text boxes. From Mai n. W n]
return.value = AD. Get (Com port. Sel ection, Pin.Selection)
print #main. ReturnVal ue, return.val ue
got o [update. pi n.info]

[PWM Qut]
gosub [Get. The. Sel cti ons. And. Text boxes. Fr om Mai n. W n]

page 13/33

Liberty BASIC Programmer's Encyc

return.value = AD. PWM Qut (Com port. Sel ecti on, Pin.Selection,
0. Send)

print #main. ReturnVal ue, return.val ue

got o [update. pi n.inf o]

[PYWM | n]
gosub [Get. The. Sel cti ons. And. Text boxes. From Mai n. W n]
return.value = AD. PMM I n(Com port. Sel ection, Pin.Selection)
print #main. ReturnVal ue, return.val ue
goto [update. pi n.info]

[Servo. out]
gosub [Get. The. Sel cti ons. And. Text boxes. Fr om Mai n. W n]
return.value = AD. Servo(Com port. Sel ection, Pin.Selection,
. Send)
print #main. ReturnVal ue, return.val ue
got o [update. pi n.inf o]

[Updat e. Pi ns]
gosub [Get. The. Sel cti ons. And. Text boxes. Fr om Mai n. W n]
return.value = AD. Update. Al'l ()
print #main. ReturnVal ue, return.val ue
got o [update. pi n.inf o]

[quit. main]
cl ose #main
bla = AD.close.all.the.com ports()
end

[Get. The. Sel cti ons. And. Text boxes. From Mai n. W n]
print #main.Val ToSend, "!contents? Val.To. Send";
print #main. ConPortNo, "contents? Com port. Sel ection”;
print #main.PinSelector, "selection? Pin.Selection"
return

Val . T

Val . To

page 14 /33

Liberty BASIC Programmer's Encyc

[updat e. pi n. i nf 0]
gosub [Get. The. Sel cti ons. And. Text boxes. From Mai n. W n]
di m pi n. statuses$(13)
di m pin. Settings$(13)

for x =0 to 13

pi n. st at uses$(x) = str$(ad. pi nstat us(Com port. Sel ecti on, x)
)
pin.Settings$(x) = ad. pi nSetting$(Com port. Sel ection, x)
next X
print #main.PinSetting, "rel oad"
print #main.PinStatuses, "reload"
wai t

' These functions can be added to any programto provide arduini power
i nput and out put
"Descriptions for functions are in there comments

"these are the funtions you call to get the arduino to do your bidding
function AD. Set (com port, PinNo, val ue)
"Set an Arduino pin high or |ow,
"WIIl return 1 one if successful, 0 if not
AD. Set = val (AD.tal k.to.device$(comport,"set ";PinNo;" ";value))
ad. pi nstatus(com port, PinNo) = val ue
ad. pi nSetting$(com port, PinNo) = "set
end function

page 15/33

Liberty BASIC Programmer's Encyc

function AD. Get (com port, PinNo)

"WIIl return the current state of the input pin

"1 for high, 0 for |ow
AD. Get = val (AD.tal k.to. device$(comport,"get ";PinNo))
ad. pi nstatus(com port, Pi nNo) = AD. Get
ad. pi nSetting$(com port, PinNo) = "get"

end function

functi on AD. PWM Qut (com port, PinNo, val ue)
"Set the PWM out put on the select pin to the val ue
"WIIl return a 1 for success and O for failure.
AD. PWM CQut = val (AD.tal k.to.device$(com port,"pwmnout ";PinNo;" "
; val ue))
ad. pi nstatus(com port, Pi nNo) = val ue
ad. pi nSetting$(com port, PinNo) = "pwm out"
end function

function AD. PMM I n(com port, PinNo)

"CGet the PWMinput fromthe pin

"WIIl return a value of 0 to 1023
AD. PWM I n = val (AD. tal k. to. device$(com port,"pwmin "; PinNo))
ad. pi nSetting$(com port,PinNo) = "pwmin"

end function

function AD. Servo(com port, PinNo, val ue)
"CGet the PWMinput fromthe pin
"WIIl return a value of 0 to 1023

AD. Servo = val (AD.tal k.to. devi ce$(com port,"servo ";PinNo;" ";valu
e))

ad. pi nstatus(com port, Pi nNo) = val ue

ad. pi nSetting$(com port, PinNo) = "servo"

end function

function AD. Update. All ()
for x =0 to 10
for y =0to 13
if ad.pinSetting$(x,y)
pi nstatus(x,y))
if ad.pinSetting$(x,y)

"set" then bla = AD. Set(x, y, ad.

get" then ad. pinstatus(x,y) = AD

page 16 /33

Liberty BASIC Programmer's Encyc

CCGet (X, y)

if ad.pinSetting$(x,y)
, Yy, ad.pinstatus(x,y))

if ad.pinSetting$(x,y)
AD. PWM I n(x, Y)

if ad.pinSetting$(x,y)
ad. pi nstatus(x,Yy))

next y
next X

end function

"pwm out” then bla = AD. PMM Qut (x

"pwmin" then ad.pinstatus(x,y) =

"servo" then bla = AD. Servo(x, VY,

"end of function to call to have the arduino do your bidding

Function AD.tal k.to.device$(port, nsg$)
"Send a Message to the arduino and return the result sent back by the
devi ce
"this function is called by the other functions above
if msg$ <> "" then
' Open the com port
sel ect case port
case 1
if ad.comports(l) <> 1 then
open "COM' ; port ; ":9600,n,8,1,ds0,cs0,rs" for r
andom as #Ar dui noCOMPort 1
ad.comports(l) =1

end if
case 2
if ad.comports(2) <> 1 then
open "COM' ; port ; ":9600,n,8,1,ds0,cs0,rs" for r

andom as #Ar dui noCOVPort 2
ad.comports(2) =1

end if
case 3
if ad.comports(3) <> 1 then
open "COM' ; port ; ":9600,n,8,1,ds0,cs0,rs" for r

page 17/33

Liberty BASIC Programmer's Encyc

andom

andom

andom

andom

andom

andom

andom

andom

as

as

as

as

as

as

as

as

#Ar dui noCOMPor t 3
ad. com ports(3) =
end if
case 4
if ad.comports(4) <>
open "COM' ; port
#Ar dui noCOMPor t 4
ad. com ports(4) =
end if
case 5
if ad.comports(5) <>
open "COM' ; port
#Ar dui noCOMPor t 5
ad. com ports(5) =
end if
case 6
if ad.comports(6) <>
open "COM' ; port
#Ar dui noCOMPor t 6
ad. com ports(6) =
end if
case 7
if ad.comports(7) <>
open "COM' ; port
#Ar dui noCOMPor t 7
ad.com ports(7) =
end if
case 8
if ad.comports(8) <>
open "COM' ; port
#Ar dui noCOMPor t 8
ad. com ports(8) =
end if
case 9
if ad.comports(9) <>
open "COM' ; port
#Ar dui noCOMPort 9
ad.com ports(9) =
end if
case 10

t hen
": 9600,

t hen
": 9600,

t hen
": 9600,

t hen
": 9600,

t hen
": 9600,

t hen
": 9600,

if ad.com ports(10) <> 1 then

open "COM' ; port
#Ar dui noCOMPor t 10
ad. com ports(10)
end if

end sel ect

":9600,

n, 8, 1, dsO0, ¢sO0,

n, 8, 1, dsO0, ¢sO0,

n, 8, 1, dsO0, ¢sO0,

n, 8, 1, dsO0, ¢sO0,

n, 8, 1, dsO0, ¢sO0,

n, 8, 1, dsO0, ¢sO0,

n, 8, 1, dsO0, ¢sO0,

rs" for
rs" for
rs" for
rs" for
rs" for
rs" for
rs" for

page 18 /33

Liberty BASIC Programmer's Encyc

"Send nessage to device

sel ect case port
case 1
print #Ardui noCOVWPort1l, nmsg$

"Wait until there is a carriage return
whil e foundLF = 0
whi | e | of (#Ar dui noCOWort1) > 0
t enp$ = i nput $(#Ar dui noCOVWPort 1,
buffer$ = buffer$ + tenp$

if tenp$ = chr$(13) then
foundLF = 1
exit while
end if
wend
wend
case 2
print #Ardui noCOVPort2, nsg$

"Wait until there is a carriage return
whil e foundLF = 0
whi | e | of (#Ar dui noCOWPort2) > 0
tenmp$ = i nput $(#Ar dui noCOVPort 2,
buffer$ = buffer$ + tenp$

if tenp$ = chr$(13) then
foundLF = 1
exit while
end if
wend
wend
case 3
print #Ardui noCOVPort3, nsg$

"Wait until there is a carriage return
whil e foundLF = 0
whi | e | of (#Ar dui noCOMPort3) > 0
t enp$ = i nput $(#Ar dui noCOVPort 3,
buffer$ = buffer$ + tenp$

if temp$ = chr$(13) then
foundLF = 1

1)

1)

1)

page 19/33

Liberty BASIC Programmer's Encyc

exit while
end if
wend
wend
case 4
print #Ardui noCOVPort4, nsg$

"Wait until there is a carriage return
while foundLF = 0O
whi | e | of (#Ar dui noCOWPort4) > 0
tenmp$ = i nput $(#Ar dui noCOVPor t 4,
buffer$ = buffer$ + tenp$

if tenp$ = chr$(13) then
foundLF = 1
exit while
end if
wend
wend
case 5
print #Ardui noCOVPort5, nsg$

"Wait until there is a carriage return
whil e foundLF = 0
whi | e | of (#Ar dui noCOMPort5) > 0
t enp$ = i nput $(#Ar dui noCOVWPort 5,
buffer$ = buffer$ + tenp$

if tenp$ = chr$(13) then
foundLF = 1
exit while
end if
wend
wend
case 6
print #Ardui noCOVPort6, nsg$

"Wait until there is a carriage return
whil e foundLF = 0
whi | e | of (#Ar dui noCOWPort6) > 0
temp$ = i nput $(#Ar dui noCOMPort 6,
buffer$ = buffer$ + tenp$

if tenp$ = chr$(13) then
foundLF = 1
exit while

1)

1)

1)

page 20/ 33

Liberty BASIC Programmer's Encyc

end if
wend
wend
case 7
print #Ardui noCOVPort7, nsg$

"Wait until there is a carriage return
whil e foundLF = 0
whi | e | of (#Ar dui noCOWPort7) > 0

tenp$ = i nput $(#Ar dui noCOWPort7, 1)

buffer$ = buffer$ + tenp$

if tenp$ = chr$(13) then
foundLF = 1
exit while
end if
wend
wend
case 8
print #Ardui noCOVPort8, nsg$

"Wait until there is a carriage return
whil e foundLF = 0
whi | e | of (#Ar dui noCOWPort8) > 0

tenp$ = i nput $(#Ar dui noCOMPort 8, 1)

buffer$ = buffer$ + tenp$

if tenp$ = chr$(13) then
foundLF = 1
exit while
end if
wend
wend
case 9
print #Ardui noCOVPort9, nsg$

"Wait until there is a carriage return
whil e foundLF = 0
whi | e | of (#Ar dui noCOVWPort9) > 0

tenp$ = i nput $(#Ar dui noCOWPort9, 1)

buffer$ = buffer$ + tenp$

if tenp$ = chr$(13) then
foundLF = 1
exit while

end if

page 21 /33

Liberty BASIC Programmer's Encyc

wend
wend
case 10
print #Ardui noCOVPort 10, nsg$

"Wait until there is a carriage return
while foundLF = 0O
whi | e | of (#Ar dui noCOWPort 10) > 0
tenp$ = i nput $(#Ar dui noCOVPort 10, 1)
buffer$ = buffer$ + tenp$

if tenp$ = chr$(13) then
foundLF = 1
exit while
end if
wend
wend

end sel ect

"Place the returned text in to AD.tal k.to. device$
AD.tal k.to.device$ = buffer$
el se
Notice "Il nproper Message Received, Mist contain a conmmand”
end if
End function

function AD.close.all.the.comports()
"a function to call on programexit to close all the comports gracefu
1y
if ad.comports(l) = 1 then
cl ose #Ardui noCOVPort 1
end if

if ad.comports(2) = 1 then
cl ose #Ardui noCOMPort 2

page 22 /33

Liberty BASIC Programmer's Encyc

end if

if ad.comports(3) =1 then

cl ose #Ardui noCOVPort 3
end if

if ad.comports(4) = 1 then

cl ose #Ardui noCOVPort 4
end if

if ad.comports(5) = 1 then

cl ose #Ardui noCOVPort5
end if

if ad.comports(6) = 1 then

cl ose #Ar dui noCOVPort 6
end if

if ad.comports(7) = 1 then

cl ose #Ar dui noCOVPort 7
end if

if ad.comports(8) = 1 then

cl ose #Ardui noCOVPort 8
end if

if ad.comports(9) = 1 then

cl ose #Ardui noCOVPort9
end if

if ad.comports(10) = 1 then
cl ose #Ardui noCOVPort 10

end if

end function

Just the Library and function descriptions

The bare naked functions are below with commented explanations for what they do.

"This must be placed at the begi nning of your

di m ad. pi nstatus(10, 100)

program

page 23 /33

Liberty BASIC Programmer's Encyc

di m ad. pi nSet ti ng$(10, 100)

for x = 0to 10
for y =0 to 100
ad. pinSetting$(x,y) = "Un-Set"
next vy
next X

" These functions can be added to any programto provide arduini power
i nput and out put
"Descriptions for functions are in there comrents

"these are the funtions you call to get the arduino to do your bidding
function AD. Set (com port, PinNo, val ue)
"Set an Arduino pin high or |ow,
"WIIl return 1 one if successful, 0 if not
AD. Set = val (AD.tal k.to. device$(comport,"set ";PinNo;" ";value))
ad. pi nstatus(com port, Pi nNo) = val ue
ad. pi nSetting$(com port, PinNo) = "set"
end function

function AD. Get (com port, PinNo)
"WIIl return the current state of the input pin
"1 for high, 0 for |ow
AD. Get = val (AD.tal k.to. device$(com port,"get ";PinNo))

page 24 /33

Liberty BASIC Programmer's Encyc

ad. pi nstatus(com port, Pi nNo) = AD. Get
ad. pi nSetting$(com port, PinNo) = "get"
end function

functi on AD. PWM Qut (com port, PinNo, val ue)
'Set the PWM out put on the select pin to the val ue
"WIIl return a 1 for success and 0 for failure.
AD. PWM Qut = val (AD.tal k.to. device$(com port, " pwmout ";PinNo;" "
;val ue))
ad. pi nstatus(com port, PinNo) = val ue
ad. pi nSetting$(com port, PinNo) = "pwm out"
end function

function AD. PWM I n(com port, PinNo)

"Cet the PWMinput fromthe pin

"WIIl return a value of 0 to 1023
AD. PMM I n = val (AD. tal k. to. device$(comport,"pwmin "; PinNo))
ad. pi nSetting$(com port, PinNo) = "pwmin"

end function

function AD. Servo(com port, PinNo, val ue)
"Cet the PWMinput fromthe pin
"WIIl return a value of 1 if successful

AD. Servo = val (AD. tal k.to. device$(comport,"servo ";PinNo;" ";valu
e))

ad. pi nstatus(com port, PinNo) = val ue

ad. pi nSetting$(com port, PinNo) = "servo"

end function

function AD. Update. All ()
for x =0 to 10
for y =0to 13
i f ad.pinSetting$(x,y)
pi nstatus(x,y))
i f ad.pinSetting$(x,y)

"set" then bla = AD. Set(x, y, ad.

"get" then ad.pinstatus(x,y) = AD
.CGet(x, y)

i f ad.pinSetting$(x,y)
, Yy, ad.pinstatus(x,y))

i f ad.pinSetting$(x,y)
AD. PWM I n(x, Y)

"pwm out” then bla = AD. PMM Qut (x

"pwmin" then ad.pinstatus(x,y) =

page 25/33

Liberty BASIC Programmer's Encyc

if ad.pinSetting$(x,y) =
ad. pinstatus(x,Yy))
next vy
next X
end function

"end of function to cal

Function AD.tal k.to.device$(port, nsg$)

to have the arduino do your

"servo" then bla = AD. Servo(x, VY,

bi ddi ng

"Send a Message to the arduino and return the result sent back by the

devi ce

"this function is called by the other functions above

if meg$ <> "" then
' Open the com port
sel ect case port
case 1

if ad.comports(l) <>
open "COM' ; port

andom as #Ar dui noCOVPort 1
ad.comports(l) =

end if
case 2
if ad.comports(2) <>
open "COM' ; port

andom as #Ar dui noCOVPor t 2
ad.comports(2) =

end if
case 3
if ad.comports(3) <>
open "COM' ; port

andom as #Ar dui noCOVPort 3
ad.comports(3) =
end if
case 4
if ad.comports(4) <>

t hen
":9600,n, 8, 1,ds0, csO,rs" for r

t hen
":9600,n, 8, 1,ds0, csO,rs" for r

t hen
":9600,n, 8, 1,ds0, csO,rs" for r

t hen

page 26 /33

Liberty BASIC Programmer's Encyc

andom

andom

andom

andom

andom

andom

andom

as

as

as

as

as

as

as

open "COM' ; port
#Ar dui noCOVPor t 4
ad.comports(4) =
end if
case 5
if ad.comports(5) <>
open "COM' ; port
#Ar dui noCOMPor t 5
ad.com ports(5) =
end if
case 6
if ad.comports(6) <>
open "COM' ; port

#Ar dui noCOVPort 6
ad.com ports(6) =
end if
case 7
if ad.comports(7) <>
open "COM' ; port
#Ar dui noCOVPort 7
ad.comports(7) =
end if
case 8
if ad.comports(8) <>
open "COM' ; port
#Ar dui noCOVPort 8
ad.comports(8) =
end if
case 9
if ad.comports(9) <>
open "COM' ; port
#Ar dui noCOVPort 9
ad.comports(9) =
end if
case 10

":9600,

t hen
": 9600,

t hen
": 9600,

t hen
": 9600,

t hen
": 9600,

t hen
": 9600,

if ad.comports(10) <> 1 then

open "COM' ;
#Ar dui noCOVPort 10
ad. com ports(10)
end if

port

end sel ect

' Send nmessage to device

sel ect case port

":9600,

n, 8,1, ds0, csO, rs" for
n, 8,1, ds0, csO, rs" for
n, 8,1, ds0, csO, rs" for
n, 8,1, ds0, csO, rs" for
n, 8,1, ds0, csO, rs" for
n, 8,1, ds0, csO, rs" for
n, 8,1, ds0, csO, rs" for

page 27 /33

Liberty BASIC Programmer's Encyc

case 1
print #Ardui noCOVPort1, nsg$

"Wait until there is a carriage return
while foundLF = 0O
whi | e | of (#Ar dui noCOWort1) > 0

tenp$ = i nput $(#Ar dui noCOMPort 1, 1)

buffer$ = buffer$ + tenp$

if tenp$ = chr$(13) then
foundLF = 1
exit while
end if
wend
wend
case 2
print #Ardui noCOVPort2, nsg$

"Wait until there is a carriage return
whil e foundLF = 0
whi | e | of (#Ar dui noCOWPort2) > 0

tenp$ = i nput $(#Ardui noCOVWPort2, 1)

buffer$ = buffer$ + tenp$

if tenp$ = chr$(13) then
foundLF = 1
exit while
end if
wend
wend
case 3
print #Ardui noCOVPort3, nsg$

"Wait until there is a carriage return
whil e foundLF = 0
whi | e | of (#Ar dui noCOWort3) > 0

tenp$ = i nput $(#Ar dui noCOVPort 3, 1)

buffer$ = buffer$ + tenp$

if tenp$ = chr$(13) then
foundLF = 1
exit while
end if
wend
wend
case 4

page 28 /33

Liberty BASIC Programmer's Encyc

print #Ardui noCOVPort4, nsg$

"Wait until there is a carriage return
whil e foundLF = 0
whi | e | of (#Ar dui noCOVWPort4) > 0

tenp$ = i nput $(#Ardui noCOVWPort4, 1)

buffer$ = buffer$ + tenp$

if tenp$ = chr$(13) then
foundLF = 1
exit while
end if
wend
wend
case 5
print #Ardui noCOVPort5, nsg$

"Wait until there is a carriage return
whil e foundLF = 0
whi | e | of (#Ar dui noCOWPort5) > 0

tenp$ = i nput $(#Ar dui noCOMPort 5, 1)

buffer$ = buffer$ + tenp$

if tenp$ = chr$(13) then
foundLF = 1
exit while
end if
wend
wend
case 6
print #Ardui noCOVPort6, nsg$

"Wait until there is a carriage return
whil e foundLF = 0
whi | e | of (#Ar dui noCOVPort6) > 0

tenp$ = i nput $(#Ar dui noCOVWPort 6, 1)

buffer$ = buffer$ + tenp$

if tenp$ = chr$(13) then
foundLF = 1
exit while
end if
wend
wend
case 7
print #Ardui noCOVPort7, nsg$

page 29 /33

Liberty BASIC Programmer's Encyc

"Wait until there is a carriage return
while foundLF = 0O
whi | e | of (#Ar dui noCOWPort7) > 0
tenmp$ = i nput $(#Ar dui noCOMPort 7,
buffer$ = buffer$ + tenp$

if tenp$ = chr$(13) then
foundLF = 1
exit while
end if
wend
wend
case 8
print #Ardui noCOVPort8, nsg$

"Wait until there is a carriage return
whil e foundLF = 0
whi | e | of (#Ar dui noCOMPort8) > 0
t enp$ = i nput $(#Ar dui noCOVPort 8,
buffer$ = buffer$ + tenp$

if tenp$ = chr$(13) then
foundLF = 1
exit while
end if
wend
wend
case 9
print #Ardui noCOVPort9, nsg$

"Wait until there is a carriage return
whil e foundLF = 0
whi | e | of (#Ar dui noCOWPort9) > 0
temp$ = i nput $(#Ar dui noCOMPort 9,
buffer$ = buffer$ + tenp$

if tenp$ = chr$(13) then
foundLF = 1
exit while
end if
wend
wend
case 10
print #Ardui noCOVPort 10, nsg$

1)

1)

1)

page 30/33

Liberty BASIC Programmer's Encyc

"Wait until there is a carriage return
whil e foundLF = 0
whi | e | of (#Ar dui noCOMPort 10) > 0
t enp$ = i nput $(#Ar dui noCOVWPort 10, 1)
buffer$ = buffer$ + tenp$

if tenp$ = chr$(13) then
foundLF = 1
exit while
end if
wend
wend

end sel ect

"Place the returned text in to AD.tal k.to. device$
AD.tal k.to.device$ = buffer$
el se
Notice "I nproper Message Received, Mist contain a comrand”
end if
End function

function AD. close.all.the.com ports()
"a function to call on programexit to close all the comports gracefu
1y
if ad.comports(l) = 1 then
cl ose #Ardui noCOVPort 1
end if

if ad.comports(2) = 1 then
cl ose #Ardui noCOMPort 2
end if

if ad.comports(3) = 1 then
cl ose #Ardui noCOMPort 3
end if

page 31/33

Liberty BASIC Programmer's Encyc

if ad.comports(4) = 1 then
cl ose #Ardui noCOVPort 4
end if

if ad.com ports(5) = 1 then
cl ose #Ardui noCOMPort5
end if

if ad.comports(6) = 1 then
cl ose #Ardui noCOMPort 6
end if

if ad.comports(7) = 1 then
cl ose #Ardui noCOMPort 7
end if

if ad.comports(8) = 1 then
cl ose #Ardui noCOMPort 8
end if

if ad.comports(9) = 1 then
cl ose #Ardui noCOMPort 9
end if

if ad.comports(10) = 1 then
cl ose #Ardui noCOVPort 10
end if

end function

Credits and thank yous

With out the folks listed below the foundation of this project would not exist and serial communications

would still be a mystery to me.

I appreciate the time an effort and frustration these people had to deal with getting this project going.

**Chris Iverson™®*
Colin McMurchie
%k *Rod* %

metro

page 32/33

http://libertybasic.conforums.com/index.cgi?action=viewprofile&username=thedarkfreak
http://libertybasic.conforums.com/index.cgi?action=viewprofile&username=colinmac
http://libertybasic.conforums.com/index.cgi?action=viewprofile&username=rodbird
http://libertybasic.conforums.com/index.cgi?action=viewprofile&username=metro

Liberty BASIC Programmer's Encyc

Table of Contents

Using an Arduino as a Slave Board

Getting Started with the functions

-Initialization code

-Setting a pin Status

-Pulling the input status of a pin

-Setting a PWM output

-Pulling the PWM input status of a pin

-Setting a servo output

-Managing Pin Settings

-Set and retrieve all pin settings and values at once
-Closing your program gracefully closing all the com ports
The Arduino Code

The Liberty Basic Demo

Just the Library and function descriptions

Credits and thank yous

page 33/33

http://www.tcpdf.org

	ArduinoAsSlaveBoard

