Liberty BASIC Programmer's Encyc

ARTICLE - Enhancing Liberty Basic Array Handling

(AKA: The memory Article)

by Dennis McKinney -
DennisMcK

originally in Liberty BASIC Newsletter #99, August, 2002

ARTICLE - Enhancing Liberty Basic Array Handling | API Memory Functions | Array of Structs | Amount
of Memory | Allocate Memory | Fill Structs with Data | Retrieving Data | Free Allocated Memory | Demo
Liberty Basic is very easy to learn and use. Unfortunately this fact tends to make some users feel that it's
too simple, and that a lot of things simply "can't be done" because the language doesn't support this or that.
This isn't necessarily the case. For example, arrays of more that two dimensions, mixed type arrays with
both string and numerical elements in them, and arrays of structures are not supported. Several times in the
past couple of years I have had need for these kind of arrays, so finally I decided to try to find a solution.
As it turns out, the solution is pretty simple.

Liberty Basic has a very powerful capability built right in, the ability to utilize the Windows API. This
ability proved to be the answer and allows all three of these array types to be created with very little effort.
It only takes four API calls and a little unusual usage of an array and a structure. Think about what a
variable, array, or structure really is. Each one is a certain number of bytes in memory that are reserved, or
allocated, to contain values. These bytes of memory are the same regardless of which language the
programmer is using to fill in the values. The Windows API provides the means to allocate memory and
Liberty Basic has the means to utilize this memory.

API Memory Functions

Three of the four APIs we will be calling are wrapped in Liberty Basic functions. These will be called:

"Function d obal Al l oc(dwBytes)
"Function d obal Lock(hMem)
"Function d obal Free(hMem)

Each one will be explained as it appears in this example.

Array of Structs

Let's begin with an array of structures. As it turns out, all three types of arrays can be created as an array of
structs. For this example we'll use an array 100 structures, and each structure will have 3 elements, 2
strings and one number. This array will not actually contain structures. The structures are going to be

page 1/7

https://www.wikispaces.com/user/view/DennisMcK
https://www.wikispaces.com/user/view/DennisMcK

Liberty BASIC Programmer's Encyc

stored in memory. The purpose of the array is to store the address of each structure that we store in
memory.

"dinension the array for 100 addresses
el ements = 99
di mstruct Array(el enments)
‘define one structure
struct test, _
a as char[20], _
b as |ong, _
c as char[20]

Notice that the string elements are typed as char[x], where x is the length of the string. Using a$ as ptr will
not work.

Amount of Memory

When you are going to allocate memory the first thing you need to determine is how much memory you
need. This is done by multiplying the number of elements in the array by the size of the structure.

‘"the size of the structure is
si zeof Test = len(test.struct)
"the anmount of nmenory needed is
menBl ockSi ze = (el enments + 1)*sizeof Test

The memory API's are accessed thought kernel32.dll so,

open "kernel 32.dll" for dll as #kernel

note: opening kernel32.dll is no longer necessary. Liberty BASIC recognizes #kernel32

Allocate Memory

Now we can allocate the memory needed

page 2 /7

Liberty BASIC Programmer's Encyc

hSArray = d obal Al l oc(nmenBl ockSi ze)

This function allocates the memory and returns a handle to the memory object. After this call hNSArray will
contain the handle for the memory. Code for checking for a valid handle (not null) isn't included here. The
function takes one argument, the amount of memory being requested.

Ok, so we've created some memory, but where is it? This next function will return a pointer to the first
byte of the memory block, which is the address of the start of the memory block. The function takes the
handle of the memory object as its argument.

ptrSarray = d obal Lock(hSArray)

Let's review what has been done so far.

1. Dimension an array for pointers to memory addresses.

2. Defined the struct for our data.

3. Allocated the needed memory.

4. Determined where the memory is located within the heap.

Fill Structs with Data

The memory and structure array are ready to be used, so for example purposes we'll fill all of the
structures with data and store them in memory. As each struct is filled it will be placed in the memory one
after the other. To place a struct into memory we'll call the RtIMoveMemory API. This API needs to know
three things:

1. Dest, where to put the data into memory.
2. Src, address of the memory block to copy, in this case the address of the test structure.
3. dwLen, the size, in bytes, of the block to copy, in this case the size of the test structure.

The destination is determined as an offset from the first byte of the allocated memory. If each structure we
were copying were 10 bytes long, the first struct would be stored starting at ptrSarray, which is the first
byte of the memory, the second struct would be stored starting at 11 bytes into the memory block, etc.
Liberty Basic takes care of the second requirement (Src) by passing a pointer to our stuct. We have already
determined the size of our structure (sizeof Test).

‘for exanple purposes, fill the whole array of structures
for i =0 to 99

page 3/7

Liberty BASIC Programmer's Encyc

"put sone data into the struct

test.a.struct = "Carol - " + str$(i)
test.b.struct =i

test.c.struct = "Andy - " + str$(i)

"calculate the destination as an offset fromthe

"first byte

dest = ptrSarray+(i*sizeof Test)

"put the structure into menory

Call DI #kernel,"Rt| MoveMenory", dest as |ong,

test as ptr, sizeofTest as long, ret as void

"store the address so the data can be found when needed
structArray(i) = dest

next i

Retrieving Data

Now that we've put 100 structures into memory, how do we get the data back from memory? Again,
Liberty Basic provides the means. Simply point our structure to the address of the memory we want.

Remember that the addresses were stored in the structArray() so we just do this: test.struct =
structArray(i), where i is the element we want.

"for exanple, read all of the structures
for i =0to 99
test.struct = structArray(i)
A$ = test.a.struct
B = test.b.struct
C$ = test.c.struct
print A + " " + str$(B) +" " + C$
next i

"To retrieve the third element fromthe 50th structure:
test.struct = structArray(49)
C$ = test.c.struct

print C$

"To change the value of the third el enment of the 50th
"structure:
test.struct = structArray(49) 'get the structure
test.c.struct = "Changed" 'change one or nore val ues
‘save it

dest = ptrSarray+(49*si zeof Test)

Call DI #kernel,"Rt| MoveMenory"”, dest as |ong,

test as ptr, sizeofTest as long, ret as void
"just for exanple

test.struct = structArray(49)

page 4 /7

Liberty BASIC Programmer's Encyc

C$ = test.c.struct
print C$

Free Allocated Memory

The final and very important thing to do when your program ends is to free every memory that we
allocated from the heap. This erases all the structs that we stored and frees the memory for use.

[quit]
ret = G obal Free(hSArray)
‘call this for every nenory bl ock all ocated.
"Use the appropriate nenory handl e.
cl ose #ker nel
end
"*E**% Functions **x*
Function d obal Al l oc(dwBytes)
"returns the handle of the newly all ocated nenory object.
"the return value is NULL if fail.
Call DI #kernel, "d obal All oc", _GVEM MOVEABLE as |ong, _
dwBytes as ul ong, G obal Alloc as | ong
End Function
Function d obal Lock(hMem)
"returns a pointer to the first byte of the nenory bl ock.
"the return value is NULL if fail.
Call DI #kernel, "d obal Lock", hMem as | ong,
G obal Lock as | ong
End Function
Function d obal Free(hMem)
Call DI #kernel, "d obal Free", hMem as | ong,
G obal Free as | ong
End Function

The complete example is contained in the demo below.

In closing I'll leave you with this. Gee, I wonder. Could this method be used with API calls that require
arrays of structures?

Demo

"dimension the array for 100 addresses

page 5/7

Liberty BASIC Programmer's Encyc

el ements = 99
Di m struct Array(el ement s)

"define one structure
struct test,
a As char[20], _

b As |long, _
c As char[20]

‘the size of the structure is
si zeof Test = Len(test.struct)

"the anmount of nenory needed is
menBl ockSi ze = (el ement s+1) *si zeof Test

Open

"kernel 32.dl 1" For DLL As #ker nel

hSArray = d obal Al'l oc(nenBl ockSi ze)

ptrSarray = d obal Lock(hSArray)

For

si zeof Test As | ong,

Next

"for exanple,

For

Next

for exanpl e purposes,

fill the whole array of structures

i =0to 99

"put sone data into the struct
test.a.struct = "Carol - " + Str$(i)
test.b.struct =i

test.c.struct = "Andy - " + Str$(i)

"calculate the destination as an offset fromthe first byte
dest = ptrSarray+(i*sizeof Test)
"put the structure into menory
Cal I DLL #kernel,"Rt| MoveMenory",
ret As void

"store the address so the data can be found when needed

dest As long, test As ptr,

structArray(i) = dest
i
read all of the structures
i =0to 99

test.struct = structArray(i)

A$ = test.a.struct

B = test.b.struct

C$ = test.c.struct

Print A$ +" " + Str$(B) +" " +C3
i

"To retrieve the third elenent fromthe 50th structure:

page 6 /7

Liberty BASIC Programmer's Encyc

test.struct = structArray(49)
C$ = test.c.struct
Print C$

"To change the value of the third el ement of the 50th structure:

test.struct = structArray(49) 'get the structure
test.c.struct = "Changed" 'change one or nore val ues
‘save it

dest = ptrSarray+(49*si zeof Test)

Cal | DLL #kernel ,"Rt| MoveMenory", dest As long, test As ptr,

si zeof Test As long, ret As void

"just for exanple
test.struct = structArray(49)
C$ = test.c.struct

Print C$

i nput a$

[quit]
ret = d obal Free(hSArray)
‘call this for every nenory bl ock all ocat ed.
"Use the appropriate nenory handl e.
Cl ose #ker nel
End

"*E**% Functions **x*
Function d obal Al l oc(dwBytes)
"returns the handle of the newly allocated nenory object.
"the return value is NULL if fail.

Cal I DLL #kernel, "d obal Alloc", _GVEM MOVEABLE As | ong,
dwBytes As ul ong, G obal Alloc As | ong
End Function

Function d obal Lock(hMem)
"returns a pointer to the first byte of the nenory bl ock.
"the return value is NULL if fail.

Cal | DLL #kernel, "d obal Lock”, hMem As | ong, d obal Lock As | ong

End Functi on

Function d obal Free(hMem)

Cal | DLL #kernel, "d obal Free", hMem As ul ong, d obal Free As | ong

End Functi on

page 7/7

http://www.tcpdf.org

	ArraysAndStructs

