
Liberty BASIC Programmer's Encyc

Transferring Bits
-

 Alyce

Bit Transfer | PatBlt | Transferring Bits with BitBlt | ROP | Demo Some text below is copied from the
Microsoft Developers Network Library.

For an eBook or printed book on using the API with Liberty BASIC, see:
APIs for Liberty BASIC

Bit Transfer
We've discussed memory device context and memory bitmaps in previous lessons. We need a way to
display the image in memory on the screen. We can do that with one of the bit transfer functions. The bit
transfer functions transfer image bits on device contexts. Some bit transfer functions specify a source DC
and a destination DC. These can be the same DC or different DCs.

PatBlt
PatBlt is the simplest of the bit transfer functions available. It alters the pixels contained within the
specified area according to the drawing rule that is designated by the raster operation argument. It works
on a single DC. The syntax for the call is:

CallDll #gdi32, "PatBlt",_
hdc as ulong,_ 'device context
xDest as long,_ 'x origin for transfer
yDest as long,_ 'y origin for transfer
xWidth as long,_ 'width of area to access
yHeight as long,_'height of area to access
ROP as ulong,_ 'type of transfer
result as long

NOTE: The operation performed is determined by the Raster Operation (ROP) argument. Here are the
ROP values available:

_BLACKNESS Set the area to Black

_WHITENESS Set the area to White

_DSTINVERT Inverts the colors in the rectangle

 page 1 / 6

https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce
http://alycesrestaurant.com/apilb/index.htm

Liberty BASIC Programmer's Encyc

_PATCOPY Copies the specified pattern into the destination
bitmap

_PATINVERT Combines the colors of the specified pattern with the
colors of the
destination rectangle by using the Boolean OR
operator

Use PatBlt to make simple transformations on an area of an image. For instance, using _BLACKNESS
causes the specified area to be black, and _DSTINVERT causes the specified area to look like a
photographic negative of itself.

Transferring Bits with BitBlt
BitBlt modifies a rectangle within the destination DC by using bits from within a rectangle on the Source
DC. The source and destination DCs can be the same DC, or different DCs. It combines the colors using
the ROP specified. Possible ROP values are described below.

CallDll #gdi32, "BitBlt", _
hDCdest as ulong,_ 'The destination DC
xDest as long,_ 'x location on destination
yDest as long,_ 'y location on destination
xWidth as long,_ 'width to transfer
yHeight as long,_ 'height to transfer
hDCsource as ulong,_ 'The source DC
xSrc as long,_ 'x location in source
ySrc as long,_ 'y location in source
ROP as ulong,_ 'The operation to be performed
result as long 'nonzero if successful

BitBlt performs a logical combination of three elements: the BRUSH selected in the Destination DC, the
PIXELS from the rectangle defined in the Source DC, and the PIXELs in the Destination DC. The
combination of these three elements is used to create the resulting image in the Destination DC. The way
these elements are combined is determined by the ROP (Raster OPeration) code. There are 256 different
ROP codes that can be used. 15 of these are defined and have a Windows constant name.

ROP
The simplest operation that can be performed is a COPY command. The Liberty BASIC name for this

 page 2 / 6

Liberty BASIC Programmer's Encyc

Windows constant is _SRCCOPY. This will simply copy the source to the destination, ignoring the settings
of the Brush and the Pixels in the destination DC. Here are the other common commands, and a
description of the way they work:

_BLACKNESS Turns all output black.

_DSTINVERT Inverts the destination bitmap.

_MERGECOPY Combines the pattern and the source bitmap by using
the Boolean AND operator.

_MERGEPAINT Combines the inverted source bitmap with the
destination bitmap by using the Boolean OR
operator.

_NOTSRCCOPY Copies the inverted source bitmap to the destination.

_NOTSRCERASE Inverts the result of combining the destination and
source bitmaps by using the Boolean OR operator.

_PATCOPY Copies the pattern to the destination bitmap.

_PATINVERT Combines the destination bitmap with the pattern by
using the Boolean XOR operator.

_PATPAINT Combines the inverted source bitmap with the
pattern by using the Boolean OR operator. Combines
the result of this operation with the destination
bitmap by using the Boolean OR operator.

_SRCAND Combines pixels of the destination and source
bitmaps by using the Boolean AND operator.

_SRCCOPY Copies the source bitmap to the destination bitmap.

_SRCERASE Inverts the destination bitmap and combines the
result with the source bitmap by using the Boolean
AND operator.

_SRCINVERT Combines pixels of the destination and source
bitmaps by using the Boolean XOR operator.

_SRCPAINT Combines pixels of the destination and source
bitmaps by using the Boolean OR operator.

_WHITENESS Turns all output white.

 page 3 / 6

Liberty BASIC Programmer's Encyc

Demo
We can now transfer an image in memory to our Liberty BASIC graphicbox.

We fill the graphicbox with yellow with the native FILL command.
We get a handle to the graphicbox device context.
We create a memory device context compatible with the graphicbox device context.
We create a memory bitmap compatible with the graphicbox device context.
We select the memory bitmap into the memory device context.
We use PatBlt to draw a white rectangle on the default black memory bitmap.
We transfer a rectangular area from the memory bitmap to the graphicbox.

Run the code and you will see this:

nomainwin
winWide=700:winHigh=500
WindowWidth=winWide+50:WindowHeight=winHigh+50
UpperLeftX=1:UpperLeftY=1

graphicbox #1.g, 0,0,winWide,winHigh
open "GDI Demo" for window as #1
 #1 "trapclose [quit]"
 #1.g "down;fill yellow;flush"

 h=hwnd(#1.g) 'graphicbox handle

 'get device context for window:
 calldll #user32, "GetDC",_
 h as ulong,_ 'graphicbox handle
 hdc as ulong 'returns handle to device context

 page 4 / 6

Liberty BASIC Programmer's Encyc

 calldll #gdi32, "CreateCompatibleDC",_
 hdc as ulong,_ 'graphicbox DC
 hMemDC as ulong 'memory DC

 nWidth=100 : nHeight=200
 calldll #gdi32, "CreateCompatibleBitmap",_
 hdc AS ulong,_ 'window DC, NOT memory DC
 winWide AS long,_ 'width of created bitmap
 winHigh AS long,_ 'height of created bitmap
 handleBmp AS ulong 'returns handle if successful

 CallDLL #gdi32,"SelectObject",_
 hMemDC as uLong,_ 'memory DC
 handleBmp as uLong,_ 'handle of bmp
 oldBmp as uLong 'returns previously selected bitmap

 'PatBlt to change the memory bitmap
 'when created, memory bitmap is all black
 'place white rectangle on memory bmp
 CallDll #gdi32, "PatBlt",_
 hMemDC as ulong,_ 'memory device context
 30 as long,_ 'x origin for transfer
 50 as long,_ 'y origin for transfer
 300 as long,_ 'width of area to access
 120 as long,_ 'height of area to access
 WHITENESS as ulong, 'make specified area white
 result as boolean

 'transfer a rectangular area of memory bmp to graphicbox
 CallDll #gdi32, "BitBlt", _
 hdc as ulong,_ 'The destination DC = graphicbox
 0 as long,_ 'x location on destination
 0 as long,_ 'y location on destination
 400 as long,_ 'width to transfer
 300 as long,_ 'height to transfer
 hMemDC as ulong,_ 'The source DC = memory
 0 as long,_ 'x location in source
 0 as long,_ 'y location in source
 SRCCOPY as ulong,'The operation to be performed
 result as long 'nonzero if successful
wait

[quit]
 'select default bmp back into DC
 CallDLL #gdi32,"SelectObject",_

 page 5 / 6

Liberty BASIC Programmer's Encyc

 hMemDC as uLong,_ 'memory DC
 oldBmp as uLong,_ 'handle of original, default bmp
 handle as uLong 'returns previously selected bitmap

 CallDLL #gdi32,"DeleteObject",_
 handleBmp as uLong,_ 'handle of bmp
 r As long

 calldll #gdi32, "DeleteDC",_
 hMemDC as ulong,_ 'DC to delete
 re as long 'nonzero=success

 calldll #user32, "ReleaseDC",_
 h as ulong,_ 'window handle
 hdc as ulong,_ 'device context
 ret as long

 close #1:end

GDI Tutorials Home

Powered by TCPDF (www.tcpdf.org)

 page 6 / 6

/GDI
http://www.tcpdf.org

	BitBlt

