Liberty BASIC Programmer's Encyc

Transferring Bits

Alyce

Bit Transfer | PatBlt | Transferring Bits with BitBlt | ROP | Demo Some text below is copied from the
Microsoft Developers Network Library.

For an eBook or printed book on using the API with Liberty BASIC, see:
APIs for Liberty BASIC

Bit Transfer

We've discussed memory device context and memory bitmaps in previous lessons. We need a way to
display the image in memory on the screen. We can do that with one of the bit transfer functions. The bit
transfer functions transfer image bits on device contexts. Some bit transfer functions specify a source DC
and a destination DC. These can be the same DC or different DCs.

PatBIt

PatBlt is the simplest of the bit transfer functions available. It alters the pixels contained within the
specified area according to the drawing rule that is designated by the raster operation argument. It works
on a single DC. The syntax for the call is:

Cal I DI | #gdi 32, "PatBlt", _

hdc as ulong,_ 'device context

xDest as long, 'x origin for transfer
yDest as long, 'y origin for transfer
xWdth as long, 'width of area to access
yHei ght as long, _'height of area to access
ROP as ul ong, _ "type of transfer

result as |ong

NOTE: The operation performed is determined by the Raster Operation (ROP) argument. Here are the
ROP values available:

_BLACKNESS Set the area to Black
_WHITENESS Set the area to White
_DSTINVERT Inverts the colors in the rectangle

page 1/6

https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce
http://alycesrestaurant.com/apilb/index.htm

Liberty BASIC Programmer's Encyc

_PATCOPY Copies the specified pattern into the destination
bitmap
_PATINVERT Combines the colors of the specified pattern with the

colors of the
destination rectangle by using the Boolean OR
operator

Use PatBIt to make simple transformations on an area of an image. For instance, using _BLACKNESS
causes the specified area to be black, and _DSTINVERT causes the specified area to look like a
photographic negative of itself.

Transferring Bits with BitBIt

BitBIt modifies a rectangle within the destination DC by using bits from within a rectangle on the Source
DC. The source and destination DCs can be the same DC, or different DCs. It combines the colors using
the ROP specified. Possible ROP values are described below.

Cal I DI #gdi32, "BitBIt", _
hDCdest as ul ong, _ ' The destination DC

xDest as long, _ "X location on destination
yDest as |ong, _ "y location on destination
xWdth as long, . 'width to transfer

yHei ght as long, _ 'height to transfer

hDCsour ce as ul ong, ' The source DC

xSrc as |ong, _ "X location in source

ySrc as |ong, _ 'y location in source

ROP as ul ong, _ " The operation to be perforned

result as long 'nonzero if successful

BitBIt performs a logical combination of three elements: the BRUSH selected in the Destination DC, the
PIXELS from the rectangle defined in the Source DC, and the PIXELSs in the Destination DC. The
combination of these three elements is used to create the resulting image in the Destination DC. The way
these elements are combined is determined by the ROP (Raster OPeration) code. There are 256 different
ROP codes that can be used. 15 of these are defined and have a Windows constant name.

ROP

The simplest operation that can be performed is a COPY command. The Liberty BASIC name for this

page2/6

Liberty BASIC Programmer's Encyc

Windows constant is _SRCCOPY. This will simply copy the source to the destination, ignoring the settings
of the Brush and the Pixels in the destination DC. Here are the other common commands, and a
description of the way they work:

_BLACKNESS Turns all output black.
_DSTINVERT Inverts the destination bitmap.
_MERGECOPY Combines the pattern and the source bitmap by using

the Boolean AND operator.

_MERGEPAINT Combines the inverted source bitmap with the
destination bitmap by using the Boolean OR
operator.

_NOTSRCCOPY Copies the inverted source bitmap to the destination.

_NOTSRCERASE Inverts the result of combining the destination and

source bitmaps by using the Boolean OR operator.
_PATCOPY Copies the pattern to the destination bitmap.

_PATINVERT Combines the destination bitmap with the pattern by
using the Boolean XOR operator.

_PATPAINT Combines the inverted source bitmap with the
pattern by using the Boolean OR operator. Combines
the result of this operation with the destination
bitmap by using the Boolean OR operator.

_SRCAND Combines pixels of the destination and source
bitmaps by using the Boolean AND operator.

_SRCCOPY Copies the source bitmap to the destination bitmap.

_SRCERASE Inverts the destination bitmap and combines the
result with the source bitmap by using the Boolean
AND operator.

_SRCINVERT Combines pixels of the destination and source

bitmaps by using the Boolean XOR operator.

_SRCPAINT Combines pixels of the destination and source
bitmaps by using the Boolean OR operator.

_WHITENESS Turns all output white.

page 3/6

Liberty BASIC Programmer's Encyc

Demo

We can now transfer an image in memory to our Liberty BASIC graphicbox.

We fill the graphicbox with yellow with the native FILL command.
We get a handle to the graphicbox device context.

e We create a memory device context compatible with the graphicbox device context.

* We create a memory bitmap compatible with the graphicbox device context.
We select the memory bitmap into the memory device context.

We use PatBlt to draw a white rectangle on the default black memory bitmap.
* We transfer a rectangular area from the memory bitmap to the graphicbox.

Run the code and you will see this:

nomai Nw n

wi nW de=700: wi nHi gh=500

W ndowW dt h=wi nW de+50: W ndowHei ght =wi nHi gh+50
Upper Lef t X=1: Upper Left Y=1

gr aphi cbox #1.g, 0,0, w nWde,w nHi gh
open "CGDI Denp" for w ndow as #1

#1 "trapclose [quit]"

#1.g "down; fill yellow flush"

h=hwnd(#1.g) 'graphicbox handl e

‘get device context for w ndow

cal ldll #user32, "GetDC', _

h as ul ong, _ ' graphi cbox handl e

hdc as ulong 'returns handl e to devi ce context

page 4 /6

Liberty BASIC Programmer's Encyc

cal I dI'l #gdi 32, "CreateConpati bl eDC", _
hdc as ulong, ' graphi cbox DC
hMenDC as ul ong 'nmenory DC

nW dt h=100 : nHei ght =200
cal 1 dl | #gdi 32, "CreateConpati bl eBi tmap", _

hdc AS ul ong, _ "wi ndow DC, NOT nenory DC
wi nWde AS long, _ 'width of created bitmp
wi nHi gh AS | ong, _ 'height of created bitmap

handl eBnp AS ulong 'returns handle if successful

Cal | DLL #gdi 32, "Sel ect Qbj ect™, _

hMenDC as ulLong, _ "menory DC
handl eBnmp as uLong, ' handl e of bnp
ol dBnmp as ulLong "returns previously selected bitmp

"PatBlt to change the nmenory bitmp

"when created, nenory bitmap is all bl ack
"place white rectangle on nenory bnp
Cal I DIl #gdi 32, "PatBIt", _

hMenDC as ulong, _ 'nenory devi ce context
30 as long, _ "X origin for transfer
50 as long, _ 'y origin for transfer
300 as long, _ "wdth of area to access
120 as long, _ "hei ght of area to access

_VWH TENESS as ulong, _ 'make specified area white
result as bool ean

"transfer a rectangular area of nmenory bnp to graphi cbox
Cal I DIl #gdi 32, "BitBIt",

hdc as ul ong, _ " The destination DC = graphi cbox
0 as long, _ "X location on destination

0 as long, _ "y location on destination

400 as long, _ "wdth to transfer

300 as long, _ "height to transfer

hivenDC as ulong, ' The source DC = nenory

0 as long, _ "X location in source

0 as long, _ "y location in source

_SRCCOPY as ulong, ' The operation to be perforned
result as long 'nonzero if successful
wai t

[quit]
'sel ect default bnp back into DC
Cal | DLL #gdi 32, "Sel ect bj ect™, _

page5/6

Liberty BASIC Programmer's Encyc

hvenDC as ulLong, _ "menory DC
ol dBnmp as ulLong, _ "handl e of original, default bnp
handl e as ulLong "returns previously selected bitmp

Cal | DLL #gdi 32, "Del et eQbj ect”, _

handl eBnp as ulLong, _ "handl e of bnp
r As | ong

cal I dl I #gdi 32, "Del eteDC", _

hMenDC as ulong, . 'DC to delete

re as |long ' nonzer o=success

cal 1 dl |l #user32, "ReleaseDC',
h as ul ong, _ "wi ndow handl e
hdc as ulong, 'device context
ret as |ong

cl ose #1: end

GDI Tutorials Home

page 6/6

/GDI
http://www.tcpdf.org

	BitBlt

