Liberty BASIC Programmer's Encyc

Callbacks

Alyce
Callbacks | Syntax | Usage | addressPTR | functionName | (typel. type2...) | returnValue | Functions

Requiring Callbacks | Generic Demo | Working Demo

Callbacks are one of the more complex aspects or Liberty BASIC programming. If you are new to
programming, or if you do not have a thorough knowledge of making API calls, then you might want to
put this article away for future consideration.

A "callback" statement in Liberty BASIC is the address of a program function that is used as an argument
in API call. The API function contacts your program's function and sends it information in the form of an
argument list. Your program's function then performs the desired action. Your program's function may
make use of the items in the list. When your program's function is finished it must return a value to the
calling function. If it returns 0, the calling function will stop itself from running and return control to your
program. Your program's function should return nonzero if it wants to let the API function to continue to
execute.

API calls with "Enum" in their names generally require callbacks. These functions will enumerate some
system entities, sending the list to your function one at a time. Your function processes each of these items
as they are sent to it by the API function. When the input parameters from the API function give no
further information to your program's function, or when your program has processed a set maximum

number of items, then it returns O to the calling API function to cause the API function to quit execution
and return control to your program.

Syntax

The syntax is:

cal | back addressPTR, functionNane(typel, type2...), returnVal ue

Usage

The parts of the callback statement are explained individually below.

addressPTR

This assigns a name to the memory address of the function. This memory address is passed into the API
function that requires a callback.

page 1/5

https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce

Liberty BASIC Programmer's Encyc

functionName

This is the name of the function in the Liberty BASIC program that will be called by the API function.

(typel, type2...)
The type list is a comma-separated list of parameters which will be specific to the function used. The

parameters must be valid data TYPES such as "ulong" and "long". API functions require different numbers
of parameters, depending upon the individual function.

returnValue

This is the type of the return value listed after the closing parenthesis. The Liberty BASIC function may
return a value to the calling function. Some calling functions evaluate this return and when YOUR function
returns O to the calling function the API stops itself from running and returns control to your program.

Functions Requiring Callbacks

Some API functions that require callbacks:

EnumChildWindows
EnumFontFamilies
EnumWindows

e EnumPrinters

Look in the documentation provided by Microsoft in its Software Developers Kits or on the MSDN to
discover the correct format for the function you must provide for the API function. The functions you
must provide for the above sample list are:

¢ EnumChildWindowsProc
¢ EnumFontFamiliesProc
¢ EnumWindowsProc

page2/5

Liberty BASIC Programmer's Encyc

¢ EnumPrintersProc

For a working example of using an Enum Function with a callback, see the helpfile "EnumWindows"
example in the CALLBACK section.

Generic Demo

Here is a generic program to demonstrate callbacks. This is NOT a REAL program!

'generic, non-working code exanpl e:

texteditor #win.te, 10, 10, 250, 250

open "Enum Sonet hi ng Exanpl e" for wi ndow as #w n
print #wn, "trapclose [quit]"

"set the variable naned address to be the nenory address for
" EnunSonet hi ngProc() using types long and ul ong, and set
"the return type of EnuntSonet hingProc() to be a | ong

cal | back myAddress, EnuntSonet hi ngProc(long, ulong), |ong
open "nydl " for dll as #dummy

"call EnumW ndows, which in turn calls back into the
"BASI C function at address.

cal Il dl'l #dummy, "EnunSonet hing",
nmyAddr ess as ul ong,
0 as | ong,
result as |ong

cl ose #dummy

wai t

[quit]

cl ose #w n

end

functi on EnuntSonet hi ngProc(wParam | Par am

print #win.te, "wParamis ";wParam
print #win.te, "l Paramis ";| Param

page3/5

Liberty BASIC Programmer's Encyc

check conditions to choose a return
'val ue based upon the paramlist val ues
"returning 0 causes EnunSonething to
"return control to the program

if | ParankO or wPar am=0 t hen

Enuntonet hi ngProc = 0

el se
EnuntSonet hi ngProc = 1

end if

"if your programreturns nonzero to

" EnunSonet hing, then it will continue
"runni ng and send your function

"anot her call back and |ist of parans.

end function

Working Demo

This is a variation on the enumwindows.bas program that comes with Liberty BASIC. The called function
is allowed to continue processing the information about windows until no more windows are found. We
check for this by looking for a handle value of 0. We give ourselves the handle information in a texteditor,
just so we can see what is happening.

texteditor #win.te, 10, 10, 250, 250
open "Enum W ndows Exanple" for wi ndow as #w n
print #wn, "trapclose [quit]"

"set the variable naned address to be the nenory address for
"enumMdProc() using types handl e and ul ong, and set

"the return type of enumMdProc() to be a | ong

cal | back address, enumMdProc(handl e, ulong), |ong

"call EnumW ndows, which in turn calls back into the
"BASI C function at address.
call dl' | #user32, "EnunW ndows",
address as ul ong,
0 as | ong,
result as |ong
wai t

page4/5

Liberty BASIC Programmer's Encyc

[quit]
cl ose #w n
end

functi on enumMdPr oc(hwnd, | paran

i f hwnd<>0 then
#w n.te "Wndow handle is "; hwnd
enumMdProc = 1

el se

"returning 0 causes EnumW ndows to return

" control to your program
enumMdProc = 0

end if

end function

Callbacks | Syntax | Usage | addressPTR | functionName | (typel. type?2...) | returnValue | Functions
Requiring Callbacks | Generic Demo | Working Demo

page5/5

http://www.tcpdf.org

	Callbacks

