Liberty BASIC Programmer's Encyc

Coding with Sub Event Handlers

Janet Terra

Table of Contents

Coding with Sub Event Handlers

Janet Terra

One Sub Rather than Many Branch Labels

Menus. Controls, and Mouse Events

Managing Multiple Windows with Sub Events

An End to Multiple WAITS, GOTOs

Liberty BASIC supports both Branch Label handling and Sub handling for control events. Alyce Watson
Liberty BASIC Newsletter Issue #137, Tip Corner - a SUB for Resizehandler discussed local visibility and
global visibility in terms of coding a resizehandler. A sub can call another sub, but a sub cannot branch to a
branch label outside that sub. Using all subs may prevent a program crash due to unseen branch labels.
Another distinct advantage of using a sub handler rather than a branch label handler for control events is
that the handle of the selected control is passed into the sub. The defined sub must contain a string variable
to receive the handle, but any handle can be passed. This allows for multiple controls accessing the same
sub. Of course multiple controls may be directed to the same branch label, but the branch label has no way
of discerning which control triggered the code. In a sub, the passed handle can be parsed for identification.
If you are using a number of like controls, this parsing may afford more streamlined code.

One Sub Rather than Many Branch Labels

Consider a program with 5 buttons. Each button is designed to launch a different application. Using branch
labels, a separate branch label is required for each button.

Nomai nwi n
W ndowW dt h = 200
W ndowHei ght = 300

Upper Left X
Upper LeftY

Int((D splayWdth - W ndoww dt h)/ 2)
I nt ((D spl ayHei ght - W ndowHei ght)/ 2)

Menu #main, "&Options", "E&it", [EndDenp]

page 1/9

http://babek.info/libertybasicfiles/lbnews/nl137/Home.htm
http://babek.info/libertybasicfiles/lbnews/nl137/tip.htm

Liberty BASIC Programmer's Encyc

But t on
But t on
But t on
But t on
But t on

#mai n.
#mai n.
#mai n.
#mai n.
#mai n.

appl,
appz,
app3,
app4,
apps,

" Not epad”,

"MS Paint",
"Cal cul ator",

[appl],
[app2]

"Sound Recorder",

" Spi der ",

[app5] ,

[app3],

uL, 30, 20, 110, 20
, UL, 30, 50, 110, 20

[app4],
uL, 30,

uL, 30, 80, 110, 20

uL, 30, 110, 120, 20
140, 120, 20

OQpen "Launchi ng Applications” for Wndow as #main
#mai n "Trapcl ose [EndDeno] "

Wai t

[EndDenp]

Cl ose #nmmain

End

[appl]
Run
Wai t

[app2]
Run
Wai t

With a sub event handler, that code can be greatly optimized.

" Not epad. exe

"Cal c. exe"

" Spi der . exe"

"MSPai nt . exe"

"sndrec32. exe"

' Choose 5 common MS Applications

App$(1)
App$(2)
App$(3)
App$(4)
App$(5)

= " Not epad. exe"
= " MSPai nt . exe"

"Cal c. exe"
"sndrec32. exe"
" Spi der . exe"

page2/9

Liberty BASIC Programmer's Encyc

Nomai nwi n
W ndowwW dt h = 200
W ndowHei ght = 300

Upper Left X
Upper LeftY

Int ((Di splayWdth - WndowW dt h)/ 2)
I nt ((Di spl ayHei ght - W ndowHei ght)/ 2)

Menu #main, "&Options", "E&it", [EndDenv]

Button #mai n. appl, "Notepad", App2Run, UL, 30, 20, 110, 20

Button #mai n.app2, "Ms Paint", App2Run, UL, 30, 50, 110, 20

Button #mai n. app3, "Cal culator", App2Run, UL, 30, 80, 110, 20

Butt on #mai n. app4, "Sound Recorder"”, App2Run, UL, 30, 110, 120, 20
Butt on #mai n. app5, "Spider", App2Run, UL, 30, 140, 120, 20

Open "Launchi ng Applications” for Wndow as #nmain
#mai n " Trapcl ose [EndDeno] "

Wi t

[EndDen]
Cl ose #nmin
End

Sub App2Run handl e$
app = Val (R ght$(handl e$, 1))

Run App$(app)
End Sub

The common sub is then parsed for the control that triggered it and the appropriate code is executed.
Constructing an array that correlates with the numbered handle extensions, as in the preceding demo, will
streamline your code even further.

Menus, Controls, and Mouse Events

When using a branch label, menu items, controls (buttons, listboxes, comboboxes, etc.), and even mouse
events, can branch to the same label.

Nomai nwi n
W ndowW dt h = 250
W ndowHei ght = 154

page 3/9

Liberty BASIC Programmer's Encyc

Menu #main, "&File", "&Random Col or", [RandonColor],|,
"E&it", [EndDenv]

G aphi cbox #mai n. gbx, 0, 0, 100, 100

Button #mai n. btn, "Random Col or", [RandonCol or], UL, 120, 10,
100, 30

Button #main.exit, "Qit", [EndDeno], UL, 120, 50, 100, 30

Open "Sharing Branch Label s" for Wndow as #main

#mai n " Trapcl ose [EndDeno] "

#mai n. gbx " Down"

#mai n. gbx "When | eftButtonUp [RandontCol or]"

Wi t

[EndDen]
Cl ose #nmin
End

[RandontCol or]

redHue = Int(Rnd(1) * 256)

greenHue = Int(Rnd(1) * 256)

bl ueHue = Int(Rnd(1) * 256)

#mai n. gbx "Fill ";redHue;" ";greenHue;" "; bl ueHue
Wi t

Because handles are passed to subs, different event handles may need to be assigned for different types of
control. Menus do not pass handles, controls do. A mouse movement passes not only the handle, but also
the current MouseX and MouseY coordinates. Event handling subs must be assigned that will
accommodate these handles and parameters. The menu sub with no handle variable must be different from
the button sub requiring a handle variable which must be different from the mouse event sub requiring a
handle variable and MouseX/ MouseY parameters. This doesn't mean that code needs to be duplicated in
each sub. Simply call one sub from another. In this demo, the menu and the left mouse click both call the
button code, as though the button itself had been clicked. Exiting with the menu option calls the trapclose
exit sub.

Nomai nwi n
W ndowW dt h = 250
W ndowHei ght = 154
Menu #main, "&File", "&Random Col or"
, RandonCol or Menu, |, "E&it", XbyMenu
G aphi cbox #mai n. gbx, 0, 0, 100, 100
Button #mai n. btn, "Random Col or"
, RandonCol or, UL, 120, 10, 100, 30
Button #main.exit, "Qit", EndDeno, UL, 120, 50, 100, 30
Qpen "Assigning Subs" for Wndow as #main

page 4/9

Liberty BASIC Programmer's Encyc

#mai n "Trapcl ose XbyTrap"
#mai n. gbx " Down"
#mai n. gbx "Wen | eftButtonUp RandonCol or Mouse”

Wi t
Sub XbyMenu

Call XbyTrap "#main"
End Sub

Sub XbyTrap handl e$
Cl ose #main
End

End Sub

Sub RandontCol or Menu
Call RandontCol or "#mai n. bt n"
End Sub

Sub Randontol or Mouse handl e$, xVar, yVar
Call RandontCol or "#main. btn"
End Sub

Sub Randontol or handl e$

redHue = Int(Rnd(1) * 256)

greenHue = Int(Rnd(1) * 256)

bl ueHue = Int(Rnd(1) * 256)

#mai n. gbx "Fill ";redHue;" ";greenHue;" "; bl ueHue
End Sub

Remember you will need to include the missing parameters whenever a sub event is being called from
another sub. The menu exit option must include a handle to be passed when calling the trapclose sub event.
Unless you are parsing, this parameter doesn't have to be valid.

Call EndDenp "whatchanmcal lit"

or even

Cal | EndDenmo ""

will work just as well as

page5/9

Liberty BASIC Programmer's Encyc

Cal | EndDeno "#main"
provided the handle$ variable isn't being relied upon in the sub.

In the Liberty BASIC Newsletter Issue #126, Mike Bradbury uses one sub event handler to identify and
manage seating arrangements using 48 separate graphicboxes Demo: Sub Handlers. That same program
would require 48 separate branch label events. Aside from streamlining code, there is at least one more
advantage to using event sub handlers -- keeping track of open windows.

Managing Multiple Windows with Sub Events

When multiple windows can be opened by the user within the same application, the programmer must find
a way to know which windows are opened and which are closed. Using sub events can help the program to
keep track of open windows and prevent program crashes from trying to reopen an already open window,
or from trying to end with one or more windows still open. In this next demo, an array is used to keep
track of open windows. When the window is opened, the handle is passed into the array. When the window
is closed, the array element is reset to null. Looping through the array when closing the main window finds
which handles have yet to be closed.

Di m QpenW ndow$(12)
Nomai nwi n

W ndowW dt h = 400
W ndowHei ght = 400

Upper Left X
Upper LeftY

Int((D splayWdth - W ndoww dt h)/ 2)
I nt ((D spl ayHei ght - W ndowHei ght)/ 2)

Butt on #mai n. w0l, "Accessory W ndow #1"
, AccwWn, UL, 30, 50, 140, 26

Butt on #mai n. w02, "Accessory W ndow #2"
, AccWn, UL, 30, 100, 140, 26

Butt on #mai n. w03, "Accessory W ndow #3"
, AccWn, UL, 30, 150, 140, 26

Butt on #mai n. w04, "Accessory W ndow #4"
, AccWn, UL, 30, 200, 140, 26

Butt on #mai n. w05, "Accessory W ndow #5"
, AccWn, UL, 30, 250, 140, 26

Butt on #mai n. w06, "Accessory W ndow #6"
, AccwWn, UL, 30, 300, 140, 26

page 6/9

http://babek.info/libertybasicfiles/lbnews/nl126/index.htm
http://babek.info/libertybasicfiles/lbnews/nl126/subhandlers.htm

Liberty BASIC Programmer's Encyc

Button #mai n. w07, "Accessory W ndow #7"
, AccWn, UL, 220, 50, 140, 26

Butt on #mai n. w08, "Accessory W ndow #8"
, AccwWn, UL, 220, 100, 140, 26

Butt on #mai n. w09, "Accessory W ndow #9"
, AccWn, UL, 220, 150, 140, 26

Butt on #mai n. wl0, "Accessory W ndow #10"
, AccwWn, UL, 220, 200, 140, 26

Button #mai n.wll, "Accessory W ndow #11"
, AccWn, UL, 220, 250, 140, 26

Button #mai n.wl2, "Accessory W ndow #12"
, AccwWn, UL, 220, 300, 140, 26

Qpen "Multiple Wndows" for Wndow as #main
#mai n "Trapcl ose XbyTrap"

#main "Font Ariel 8 Bold"

Wi t

Sub EndDeno handl e$
For i =1 to 12
| f OpenWndowd(i) <> "" Then
wi nHandl e$ = OpenW ndow$(i)
Cl ose #w nHandl e$
End If
Next |
Cl ose #main
End
End Sub

Sub AccWn handl e$
win = Val (Ri ght $(handl e$, 2))
wi nHandl e$ = "#acc"; Right$("0";w n, 2)
| f OpenW ndow$(win) <> "" Then
Exit Sub ' Don't reopen an already open w ndow
End If
I[f win < 7 Then
ulx = Int(Di splayWdth / 5) + 1

uly = Int(Di splayHeight / 8) * (win - 1) + 1
El se

ulx = Int(Di splayWdth / 5) * 3 + 1

uly = Int(D splayHeight / 8) * (wvwn - 7) + 1
End I f

W ndowW dth = 100
W ndowHei ght = 80
Upper Left X = ul x
UpperLeftY = uly

page 7/9

Liberty BASIC Programmer's Encyc

title$ = "Accessory Wndow #";w n
Fol l owi ng requires Case Sel ect because vari abl es cannot be used for
handl es
" prior to opening the w ndow

Sel ect Case win

Case 1

Open title$ for Wndow as #accO1
Case 2

Open title$ for Wndow as #acc02
Case 3

Open title$ for Wndow as #acc03
Case 4

Open title$ for Wndow as #acc04
Case 5

Open title$ for Wndow as #acc05
Case 6

Open title$ for Wndow as #acc06
Case 7

Open title$ for Wndow as #accOQ7
Case 8

Open title$ for Wndow as #acc08
Case 9

Open title$ for Wndow as #acc09
Case 10

Open title$ for Wndow as #acclO
Case 11

Open title$ for Wndow as #accll
Case 12

Open title$ for Wndow as #accl?

End Sel ect

OpenW ndow$(wi n) = wi nHandl e$
Now t hat the wi ndow i s open, variables can be used for handl es

#w nHandl e$ "Trapcl ose C oseAcc"

End Sub

Sub d oseAcc handl e$
win = Val (Ri ght $(handl e$, 2))
Cl ose #handl e$
OpenW ndow$(wi n) = ""

End Sub

It is not necessary to number the accessory windows as such. Any names will do. This demo looks at
OpenW ndowd(wi n) . If your window names aren't in any logical sequence, just loop through the entire
array to find a match.

page 8/9

Liberty BASIC Programmer's Encyc

An End to Multiple WAITS, GOTOs

Once a sub has been executed, program execution reverts to the state prior to calling the sub. In most
cases, your program will need only one WAIT statement. Since the events are triggered by controls, there
is no need for a single GOTO statement. In a recent discussion of Sub Events at the Liberty BASIC Forum,
Carl Gundel, author of Liberty BASIC clarified, "WAIT does not use GOTO if your event handlers are all
SUBs. The SUB will get executed, and when it is finished you will be left at the same WAIT statement."

So get control of your controls using Sub Event Handlers. You may find the results well worth the effort.

page 9/9

http://libertybasic.conforums.com
http://www.tcpdf.org

	Coding With Subs

