Liberty BASIC Programmer's Encyc

] htkpsi o iberty

] http: frwaw ibertybasic, comy 7
] http: [Bbertybasic. comy &
] it . ibertybasic, com @
] hittp frowaw iberty basic, comf 10 v

Back when Internet Explorer 3.0 was released a combobox control became available that has the ability to
display images. The aim of this article is to show how to use one of these extended comboboxes, called
ComboBoxEx, in a Liberty BASIC application without using a third party DLL, timer or callback.

Since this control is not native to Liberty BASIC it must be created and managed through the Windows
API. This is not difficult but it does impose a certain programming style for the application since some
method to monitor the user's actions with the control must be used. One way to monitor the control is to
run the application in a scan loop and constantly check for keyboard and mouse input. This is the
technique used in this article. If this method is used, the wait statement cannot be used anywhere in the
application.

This article walks through the steps and code needed to implement and support the ComboBoxEx in LB.
Note: the ComboBoxEx control in this article is also referred to as a combobox. This code is not a
complete program so please download the zip file at the end of this page for the source code.

Code

To begin with, the ComboBoxEx requires a COMBOBOXEXITEMA struct to supply information about
each item in its dropdown list.

" COVBOBOXEXI TEMVA

Struct cbi,
mask As U ong,
iltem As Long,

pszText As Ptr, _
cchText Max As Long,

i l mage As Long,

i Sel ect edl mrage As Long,
i Overlay As Long,

i I ndent As Long,

| Param As U ong

page 1/8

Liberty BASIC Programmer's Encyc

We want this combobox to display both text and images so the mask element of the struct must be set with
the value that specifies this.

cbi . mask.struct = 7 ' CBEI F_TEXT or CBEI F_| MAGE or CBEI F_SELECTEDI MAGE

Two more struct elements can be set at this time.

cbi.cchText Max. struct = 100

"Limts the list itens to 100 characters each
chbi.iltemstruct = -1

"Itemrs will be added to the end of the |ist.

The next requirement is to load the ComboBoxEx32 class by calling the InitCommonControlsEx API
function. Again a small struct is required.

"I NIl TCOMMONCONTROLSEX
Struct iccex, _
dwSi ze As U ong, _
dwi CC As Ul ong

"Indicate the size of this struct.
i ccex. dwSi ze. struct = Len(iccex.struct)

" Speci fy the ConboBoxEx32 cl ass.
i ccex.dw CC. struct = hexdec("200") "I CC USEREX CLASSES.

' Load ConmboBoxEx32 cl ass.
Calldll #conctl 32, "InitComonControl sEx", iccex As Struct, r As Long

The combobox has one more requirement. It needs an Image List containing the image or images that will
be used. You can create your own bitmap or icons and create an image list for these. This article takes the
easy route and uses the Windows system image list. The code download that accompanies this article

contains a second program that shows how to create an image list and use your own bitmap for the images.

The combobox in this code will display urls like Internet Explorer and the icon associated with urls is
contained in the system image list. All that needs to be done to use this icon is to discover it's position
within the image list, and to get the handle of the image list. Windows provides a function called
SHGetFilelnfo that will do this. Another struct is required for this too.

" SHFI LEI NFO
Struct shfi, _
hl con As U ong,

page 2/ 8

Liberty BASIC Programmer's Encyc

ilcon As Long, _

dwAttri butes As U ong, _
szDi spl ayNane As Char|[260],
szTypeNanme As Char[80]

"CGet the size of this struct.
| enSHFI = Len(shfi.struct)

SHGetFilelnfo will need to know what kind of icon is wanted so the flags must be set for this. The flags
are SHGFI_USEFILEATTRIBUTES or SHGFI_SYSICONINDEX or SHGFI_ICON or
SHGFI_SMALLICON and this value is 16657.

With these flags SHGetFileInfo will find the proper icon if you tell it the file extension that you are
looking for. In this case it is *.url.

Calldll #shell 32, "SHGetFilelnfo", "*.url" As Ptr, 0 As Long,
shfi As Struct, lenSHFI As Long, 16657 As U ong
, hSyslngList As U ong

If the function call succeeds the url icon index is returned in shfi.ilcon.struct and the handle to the image
list is returned in hSysImgL.ist.

After opening the application window the combobox is created with the CreateWindowExA API function.

hWwhdPar ent = hwnd(#mai n)

Cal I dl' I #user32, "Get WndowLongA", hWhdParent As U ong,
_OGAL_HI NSTANCE As Long, hlinst As U ong

class$ = " ConboBoxEx32"

style = W5 VISIBLE or _W5 CHI LD or _W5 VSCRCOLL or

_CBS_AUTOHSCROLL or _CBS_DROPDOWN

Cal I dI | #user32, "CreateWndowexA', 0 As Long, class$ As Ptr,
"" As Ptr, style As Long, 20 As Long, 20 As Long, _
400 As Long, 150 As Long, hwidParent As U ong, 0 As Long,
hlnst As Uong, 0 As Long, hCbe As U ong

"hCbe contains the handl e of the new conmbobox

The next step is to tell the combobox which image list to use by sending a message with the proper
command and the handle to the system image list that was obtained earlier.

CBEM SETI MAGELI ST = (_WM_USER+2)
Cal l dl I #user32, "SendMessageA', hCbe As U ong, CBEM
SETI MAGELI ST As Long,

page 3/8

Liberty BASIC Programmer's Encyc

0 As Long, hSyslngList As Uong, r As Long

The last step is to load the combobox with the text to display and the image to go along with it. A different
image may be specified for each item in the list. The index of the url icon is used to specify the image in
cbi.ilmage.struct, and also in cbi.iSelectedImage.struct. This next code loads 10 url strings and sets the
image for each one.

CBEM | NSERTI TEMA = (_\WM USER+1)

For i =1 To 10
"Set the inmage for this itemto the url icon
cbi.ilmge.struct = shfi.ilcon.struct
cbi . i Sel ect edl mage. struct = shfi.ilcon. struct
"Set the text.
cbi.pszText.struct = "http://ww.libertybasic.coml "+ str$(i)

"Add the itemto the end of the |ist.

Cal l dl | #user32, "SendMessageA', hCbe As U ong, _

CBEM | NSERTI TEMA As Long, O As Long, cbhi As Struct, r As Long
Next i

At this point the combobox has been created and displays the url image for each item in the dropdown list.
It would be nice if this was all there was to it but we still need to know when an item is selected from the
list and when the user types in a new url and presses the Enter key. A ComboBoxEx is actually a window
that contains three controls, a regular combobox along with it's list and edit control. In order to monitor the
user's actions with the combobox you need to have the handles to the edit control and the dropdown list.
The Windows API provides a function named GetComboBoxInfo that is supposed to give these handles to
you. However, in my experience it often fails to return the handle of the edit control when used with an
extended combobox. The following sub uses a combination of functions to get the job done.

Sub Get ChoExI nfo hCboEx32, Byref hwndEdit, Byref hwndLi st
"In: hCboEx32. The handl e of a ConboBoxEX.
"Qut: The edit control and |istbox handl es of a ConmboBoxEx.
struct cbolnfo, cbSize As Long, pad As Char[44], hwndList As Long
cbol nfo. cbSi ze. struct = Len(cbol nfo. struct)
"CGet the handl e of the conbobox in hCbhoEx32.
Cal l dl I #user32, "GetWndow', hCboEx32 As U ong
, GWCH LD As | ong, hwndConbo As U ong
"Cet the handle of the edit control in hwndConbo.
Call dl I #user32, "GetWndow', hwndConbo As U ong
, _GWCH LD As Long, hwndEdit As U ong
"CGet the handle of the listbox in hwndConbo.
Cal I dl I #user32, "Get ConboBoxI nfo", hwndConbo As U ong
, cbolnfo As Struct, r As Long
hwndLi st = cbol nf o. hwndLi st. struct
end sub

page 4 /8

Liberty BASIC Programmer's Encyc

Just call this sub and the edit and list handles are returned in hCbeEdit and hCbeList.

"Get the listbox and edit control handl es of a ConboBoxEx32.
Cal|l Get CboExlI nfo hChe, hCheEdit, hCheli st

Now we have everything needed to use the ComboBoxEx in a Liberty BASIC application except for the
code to monitor it for user actions. A pair of subs and a couple of supporting functions handle this quite
well. You can throw these away and write your own, but if you look closely at these routines you'll notice
that they can be used with a variety of different API created controls with little change. The sub GetEvent
is the work horse. It tells you what control the mouse cursor is over when the left mouse button is pressed
down, and also when the left mouse button is released after being pressed. It also tells you what control has
the focus when the enter key is pressed and also when it's released after being pressed. It's very fast since it
only uses one API function to get every virtual keystate in the whole keyboard. Two additional supporting
functions are also used, GetMouseFocus() and GetFocus(). To make it easy to add additional keystate
information a struct is used for returned values instead of global variables or Byref arguments.

Struct kb, _
hDn As U ong, _
"Handl e of wi ndow or control with focus when a key down occurs, or

‘whose client area is under the nouse cursor when a |left button
_ "down occurs.
hUp As U ong, _ ' Sane as above, but when a rel ease occurs.
| Bt nDn As Short, _ "Left nouse button is down.
IBtnClick As Short, _
"Left nouse button has been clicked or pressed and rel eased.
ret Down As Short, _ "Enter key is down.
retUp As Short "Enter key has been pressed and rel eased.

Sub GetEvent 'Returns information to kb.struct.

"Left npuse: button down, button click, handle of w ndow whose client
"area i s under the nobuse cursor.

"Enter key: key down, key up (after key down), handle of wi ndow with
f ocus.

keyBuf $ = Space$(256)

Cal I dI | #user32, "GetKeyboardState", keyBuf$ As Ptr, r As |ong

' VK_LBUTTON

I f Not (kb.IBtnDn.struct) Then

| f Asc(M d$(keyBuf$, 2))>127 Then
kb. | Bt nDn. struct = 1: kb. hDn.struct = Get MbuseFocus()

page 5/8

Liberty BASIC Programmer's Encyc

End If
El se
I f Asc(M d$(keyBuf $, 2)) <127 Then
kb. I Btndick.struct = 1. kb.IBtnDn.struct = 0: kb. hUp.
struct = Get MouseFocus()

End |f
End If
" VK RETURN

I f Not (kb.retDown.struct) Then
| f Asc(M d$(keyBuf $, 14))>127 Then
kb. ret Down. struct = 1: kb. hDn.struct = Get Focus()
End If
El se
| f Asc(M d$(keyBuf $, 14)) <127 Then
kb. retUp.struct = 1. kb.retDown.struct = 0: kb. hUp.
struct = Get Focus()
End I f
End If
End Sub

This next sub examines the event information collected by GetEvent and acts upon it.
This sub can also be modified to handle events for different API created controls. Only the events for the
combobox are handled in this code.

Sub Handl eEvent 'Uses kb.struct for argunents.
Sel ect Case
Case kb.IBtndick. struct
| f kb. hDn.struct = hCbelLi st Then
"allow tinme for the conbobox to update it's display.
s = Time$("ns"): Wiile Time$("ns") < s+50: Wend
Print Get WndowText $(hChe, 255)
End If
kb. |l Btndick.struct = 0: kb.hDn.struct = 0: kb. hUp.
struct =0

Case kb.retUp. struct
I f kb. hUp.struct = hCbeEdit Then
txt$ = Get WndowText $(hCbe, 255)
If txt$ <> "" Then Print "Enter pressed -> ";txt$

End I f
kb.retUp.struct = 0: kb.hDn.struct = 0: kb.hUp.struct =0
End Sel ect

End Sub

page 6/ 8

Liberty BASIC Programmer's Encyc

GetEvent and HandleEvent are the routines to call in your application loop in order to monitor the mouse
and keyboard events for the ComboBoxEx.

This next function is used by GetEvent. It's purpose is to return the handle of the window whose client area
is under the mouse cursor when it's called.

Function Get MouseFocus()
"Returns the handl e of the wi ndow or control whose
‘client area is under the nouse cursor.
Struct GWFpoint, x As Long, y As Long
Struct GwWrc, left As Long, top As Long, right As Long
, bottom As Long
Cal l dl I #user32, "GetCursorPos", GWFpoint As Struct, ret As Void
X = QVFpoi nt. x. struct
Y = GVFpoi nt.y.struct
Cal l dl I #user32, "W ndowFronPoint", X As Long, Y As Long
, hwid As U ong
Call dl'| #user32, "ScreenToCient", hWwd As U ong
, GWFpoint As Struct, ret As Void
x = GVFpoi nt. x. struct
y = GWFpoint.y.struct
Cal I dll #user32, "GetdientRect”, hwd As U ong, GWrc As
Struct, r As long
Cal I dll #user32, "PtlnRect", GWrc As Struct, x As Long,
y As Long, PointOnClient As |ong
I f PointOnClient Then Get MouseFocus = hWd
End Function

GetFocus(), also used by GetEvent, is just a wrapper for the Win32 function of the same name.

Functi on Get Focus()
Cal I dl I #user32, "GetFocus", GetFocus As U ong
End Function

That pretty well covers it, other than a couple of function wrappers and the code for the window itself.
Download the source and try it for yourself.

Source code

cboex32.zip

e Details

page 7/ 8

/file/view/cboex32.zip/30093983/cboex32.zip
/file/view/cboex32.zip/30093983/cboex32.zip
/file/detail/cboex32.zip

Liberty BASIC Programmer's Encyc

e Download
e 6 KB

For more information on using the ComboBoxEx see

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/shellcc/platform/commectls/comboex/comboex.asp or use your favorite search engine and look for
"ComboBoxEx Controls".

DennisMcK apr 30, 2006

page 8/ 8

/file/view/cboex32.zip/30093983/cboex32.zip
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/platform/commctls/comboex/comboex.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/platform/commctls/comboex/comboex.asp
https://www.wikispaces.com/user/view/DennisMcK
https://www.wikispaces.com/user/view/DennisMcK
http://www.tcpdf.org

	Combobox with Images

