
Liberty BASIC Programmer's Encyc

Back when Internet Explorer 3.0 was released a combobox control became available that has the ability to
display images. The aim of this article is to show how to use one of these extended comboboxes, called
ComboBoxEx, in a Liberty BASIC application without using a third party DLL, timer or callback.

Since this control is not native to Liberty BASIC it must be created and managed through the Windows
API. This is not difficult but it does impose a certain programming style for the application since some
method to monitor the user's actions with the control must be used. One way to monitor the control is to
run the application in a scan loop and constantly check for keyboard and mouse input. This is the
technique used in this article. If this method is used, the wait statement cannot be used anywhere in the
application.

This article walks through the steps and code needed to implement and support the ComboBoxEx in LB.
Note: the ComboBoxEx control in this article is also referred to as a combobox. This code is not a
complete program so please download the zip file at the end of this page for the source code.

Code

To begin with, the ComboBoxEx requires a COMBOBOXEXITEMA struct to supply information about
each item in its dropdown list.

'COMBOBOXEXITEMA
Struct cbi,
 mask As Ulong, _
 iItem As Long, _
 pszText As Ptr, _
 cchTextMax As Long, _
 iImage As Long, _
 iSelectedImage As Long, _
 iOverlay As Long, _
 iIndent As Long, _
 lParam As Ulong

 page 1 / 8

Liberty BASIC Programmer's Encyc

We want this combobox to display both text and images so the mask element of the struct must be set with
the value that specifies this.

cbi.mask.struct = 7 'CBEIF_TEXT or CBEIF_IMAGE or CBEIF_SELECTEDIMAGE

Two more struct elements can be set at this time.

cbi.cchTextMax.struct = 100
'Limits the list items to 100 characters each.
cbi.iItem.struct = -1
'Items will be added to the end of the list.

The next requirement is to load the ComboBoxEx32 class by calling the InitCommonControlsEx API
function. Again a small struct is required.

'INITCOMMONCONTROLSEX
Struct iccex, _
 dwSize As Ulong,_
 dwICC As Ulong

'Indicate the size of this struct.
iccex.dwSize.struct = Len(iccex.struct)

'Specify the ComboBoxEx32 class.
iccex.dwICC.struct = hexdec("200") 'ICC_USEREX_CLASSES.

'Load ComboBoxEx32 class.
Calldll #comctl32, "InitCommonControlsEx", iccex As Struct, r As Long

The combobox has one more requirement. It needs an Image List containing the image or images that will
be used. You can create your own bitmap or icons and create an image list for these. This article takes the
easy route and uses the Windows system image list. The code download that accompanies this article
contains a second program that shows how to create an image list and use your own bitmap for the images.

The combobox in this code will display urls like Internet Explorer and the icon associated with urls is
contained in the system image list. All that needs to be done to use this icon is to discover it's position
within the image list, and to get the handle of the image list. Windows provides a function called
SHGetFileInfo that will do this. Another struct is required for this too.

'SHFILEINFO
Struct shfi, _
 hIcon As Ulong, _

 page 2 / 8

Liberty BASIC Programmer's Encyc

 iIcon As Long, _
 dwAttributes As Ulong, _
 szDisplayName As Char[260], _
 szTypeName As Char[80]

'Get the size of this struct.
lenSHFI = Len(shfi.struct)

SHGetFileInfo will need to know what kind of icon is wanted so the flags must be set for this. The flags
are SHGFI_USEFILEATTRIBUTES or SHGFI_SYSICONINDEX or SHGFI_ICON or
SHGFI_SMALLICON and this value is 16657.

With these flags SHGetFileInfo will find the proper icon if you tell it the file extension that you are
looking for. In this case it is *.url.

Calldll #shell32, "SHGetFileInfo", "*.url" As Ptr, 0 As Long, _
 shfi As Struct, lenSHFI As Long, 16657 As Ulong
, hSysImgList As Ulong

If the function call succeeds the url icon index is returned in shfi.iIcon.struct and the handle to the image
list is returned in hSysImgList.

After opening the application window the combobox is created with the CreateWindowExA API function.

hWndParent = hwnd(#main)
Calldll #user32, "GetWindowLongA", hWndParent As Ulong, _
 _GWL_HINSTANCE As Long, hInst As Ulong
class$ = "ComboBoxEx32"
style = _WS_VISIBLE or _WS_CHILD or _WS_VSCROLL or
 _CBS_AUTOHSCROLL or _CBS_DROPDOWN

Calldll #user32, "CreateWindowExA", 0 As Long, class$ As Ptr, _
 "" As Ptr, style As Long, 20 As Long, 20 As Long, _
 400 As Long, 150 As Long, hWndParent As Ulong, 0 As Long, _
 hInst As Ulong, 0 As Long, hCbe As Ulong
'hCbe contains the handle of the new combobox

The next step is to tell the combobox which image list to use by sending a message with the proper
command and the handle to the system image list that was obtained earlier.

CBEM.SETIMAGELIST = (_WM_USER+2)
Calldll #user32, "SendMessageA", hCbe As Ulong, CBEM.
SETIMAGELIST As Long, _

 page 3 / 8

Liberty BASIC Programmer's Encyc

 0 As Long, hSysImgList As Ulong, r As Long

The last step is to load the combobox with the text to display and the image to go along with it. A different
image may be specified for each item in the list. The index of the url icon is used to specify the image in
cbi.iImage.struct, and also in cbi.iSelectedImage.struct. This next code loads 10 url strings and sets the
image for each one.

CBEM.INSERTITEMA = (_WM_USER+1)
For i = 1 To 10
 'Set the image for this item to the url icon.
 cbi.iImage.struct = shfi.iIcon.struct
 cbi.iSelectedImage.struct = shfi.iIcon.struct
 'Set the text.
 cbi.pszText.struct = "http://www.libertybasic.com/ "+ str$(i)
 'Add the item to the end of the list.
 Calldll #user32, "SendMessageA", hCbe As Ulong, _
 CBEM.INSERTITEMA As Long, 0 As Long, cbi As Struct, r As Long
Next i

At this point the combobox has been created and displays the url image for each item in the dropdown list.
It would be nice if this was all there was to it but we still need to know when an item is selected from the
list and when the user types in a new url and presses the Enter key. A ComboBoxEx is actually a window
that contains three controls, a regular combobox along with it's list and edit control. In order to monitor the
user's actions with the combobox you need to have the handles to the edit control and the dropdown list.
The Windows API provides a function named GetComboBoxInfo that is supposed to give these handles to
you. However, in my experience it often fails to return the handle of the edit control when used with an
extended combobox. The following sub uses a combination of functions to get the job done.

Sub GetCboExInfo hCboEx32, Byref hwndEdit, Byref hwndList
 'In: hCboEx32. The handle of a ComboBoxEx.
 'Out: The edit control and listbox handles of a ComboBoxEx.
 struct cboInfo, cbSize As Long, pad As Char[44], hwndList As Long
 cboInfo.cbSize.struct = Len(cboInfo.struct)
 'Get the handle of the combobox in hCboEx32.
 Calldll #user32, "GetWindow", hCboEx32 As Ulong
, _GW_CHILD As long, hwndCombo As Ulong
 'Get the handle of the edit control in hwndCombo.
 Calldll #user32, "GetWindow", hwndCombo As Ulong
, _GW_CHILD As Long, hwndEdit As Ulong
 'Get the handle of the listbox in hwndCombo.
 Calldll #user32, "GetComboBoxInfo", hwndCombo As Ulong
, cboInfo As Struct, r As Long
 hwndList = cboInfo.hwndList.struct
end sub

 page 4 / 8

Liberty BASIC Programmer's Encyc

Just call this sub and the edit and list handles are returned in hCbeEdit and hCbeList.

'Get the listbox and edit control handles of a ComboBoxEx32.
Call GetCboExInfo hCbe, hCbeEdit, hCbeList

Now we have everything needed to use the ComboBoxEx in a Liberty BASIC application except for the
code to monitor it for user actions. A pair of subs and a couple of supporting functions handle this quite
well. You can throw these away and write your own, but if you look closely at these routines you'll notice
that they can be used with a variety of different API created controls with little change. The sub GetEvent
is the work horse. It tells you what control the mouse cursor is over when the left mouse button is pressed
down, and also when the left mouse button is released after being pressed. It also tells you what control has
the focus when the enter key is pressed and also when it's released after being pressed. It's very fast since it
only uses one API function to get every virtual keystate in the whole keyboard. Two additional supporting
functions are also used, GetMouseFocus() and GetFocus(). To make it easy to add additional keystate
information a struct is used for returned values instead of global variables or Byref arguments.

Struct kb,_
 hDn As Ulong,_
'Handle of window or control with focus when a key down occurs, or
 _
'whose client area is under the mouse cursor when a left button
 _ 'down occurs.
 hUp As Ulong,_ 'Same as above, but when a release occurs.
 lBtnDn As Short,_ 'Left mouse button is down.
 lBtnClick As Short,_
'Left mouse button has been clicked or pressed and released.
 retDown As Short,_ 'Enter key is down.
 retUp As Short 'Enter key has been pressed and released.

Sub GetEvent 'Returns information to kb.struct.

'Left mouse: button down, button click, handle of window whose client
 'area is under the mouse cursor.

'Enter key: key down, key up (after key down), handle of window with
focus.
 keyBuf$ = Space$(256)
 Calldll #user32, "GetKeyboardState", keyBuf$ As Ptr, r As long
 '_VK_LBUTTON
 If Not(kb.lBtnDn.struct) Then
 If Asc(Mid$(keyBuf$,2))>127 Then
 kb.lBtnDn.struct = 1: kb.hDn.struct = GetMouseFocus()

 page 5 / 8

Liberty BASIC Programmer's Encyc

 End If
 Else
 If Asc(Mid$(keyBuf$,2))<127 Then
 kb.lBtnClick.struct = 1: kb.lBtnDn.struct = 0: kb.hUp.
struct = GetMouseFocus()
 End If
 End If

 '_VK_RETURN
 If Not(kb.retDown.struct) Then
 If Asc(Mid$(keyBuf$,14))>127 Then
 kb.retDown.struct = 1: kb.hDn.struct = GetFocus()
 End If
 Else
 If Asc(Mid$(keyBuf$,14))<127 Then
 kb.retUp.struct = 1: kb.retDown.struct = 0: kb.hUp.
struct = GetFocus()
 End If
 End If
End Sub

This next sub examines the event information collected by GetEvent and acts upon it.
This sub can also be modified to handle events for different API created controls. Only the events for the
combobox are handled in this code.

Sub HandleEvent 'Uses kb.struct for arguments.
 Select Case
 Case kb.lBtnClick.struct
 If kb.hDn.struct = hCbeList Then
 'allow time for the combobox to update it's display.
 s = Time$("ms"): While Time$("ms") < s+50: Wend
 Print GetWindowText$(hCbe,255)
 End If
 kb.lBtnClick.struct = 0: kb.hDn.struct = 0: kb.hUp.
struct = 0

 Case kb.retUp.struct
 If kb.hUp.struct = hCbeEdit Then
 txt$ = GetWindowText$(hCbe,255)
 If txt$ <> "" Then Print "Enter pressed -> ";txt$
 End If
 kb.retUp.struct = 0: kb.hDn.struct = 0: kb.hUp.struct = 0
 End Select
End Sub

 page 6 / 8

Liberty BASIC Programmer's Encyc

GetEvent and HandleEvent are the routines to call in your application loop in order to monitor the mouse
and keyboard events for the ComboBoxEx.

This next function is used by GetEvent. It's purpose is to return the handle of the window whose client area
is under the mouse cursor when it's called.

Function GetMouseFocus()
 'Returns the handle of the window or control whose
 'client area is under the mouse cursor.
 Struct GMFpoint, x As Long, y As Long
 Struct GMFrc, left As Long, top As Long, right As Long
, bottom As Long
 Calldll #user32, "GetCursorPos", GMFpoint As Struct, ret As Void
 X = GMFpoint.x.struct
 Y = GMFpoint.y.struct
 Calldll #user32, "WindowFromPoint", X As Long, Y As Long
, hWnd As Ulong
 Calldll #user32, "ScreenToClient", hWnd As Ulong
, GMFpoint As Struct, ret As Void
 x = GMFpoint.x.struct
 y = GMFpoint.y.struct
 Calldll #user32, "GetClientRect", hWnd As Ulong, GMFrc As
 Struct, r As long
 Calldll #user32, "PtInRect", GMFrc As Struct, x As Long, _
 y As Long, PointOnClient As long
 If PointOnClient Then GetMouseFocus = hWnd
End Function

GetFocus(), also used by GetEvent, is just a wrapper for the Win32 function of the same name.

Function GetFocus()
 Calldll #user32, "GetFocus", GetFocus As Ulong
End Function

That pretty well covers it, other than a couple of function wrappers and the code for the window itself.
Download the source and try it for yourself.

Source code

cboex32.zip

Details

 page 7 / 8

/file/view/cboex32.zip/30093983/cboex32.zip
/file/view/cboex32.zip/30093983/cboex32.zip
/file/detail/cboex32.zip

Liberty BASIC Programmer's Encyc

Download
6 KB

For more information on using the ComboBoxEx see
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/shellcc/platform/commctls/comboex/comboex.asp or use your favorite search engine and look for
"ComboBoxEx Controls".

-
 DennisMcK Apr 30, 2006

Powered by TCPDF (www.tcpdf.org)

 page 8 / 8

/file/view/cboex32.zip/30093983/cboex32.zip
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/platform/commctls/comboex/comboex.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/platform/commctls/comboex/comboex.asp
https://www.wikispaces.com/user/view/DennisMcK
https://www.wikispaces.com/user/view/DennisMcK
http://www.tcpdf.org

	Combobox with Images

