
Liberty BASIC Programmer's Encyc

Reading and Writing to Windows Event Log
-

 StPendl
Read Event Log | Write Event Log

Read Event Log

struct EVENTLOGRECORD, _
 Length as uLong, _
 Reserved as uLong, _
 RecordNumber as uLong, _
 TimeGenerated as uLong, _
 TimeWritten as uLong, _
 EventID as uLong, _
 EventType as word, _
 NumStrings as word, _
 EventCategory as word, _
 ReservedFlags as word, _
 ClosingRecordNumber as uLong, _
 StringOffset as uLong, _
 UserSidLength as uLong, _
 UserSidOffset as uLong, _
 DataLength as uLong, _
 DataOffset as uLong

 Open "advapi32.dll" for dll as #advapi32

 lpSourceName$ = "Application"; chr$(0)

 calldll #advapi32, "OpenEventLogA", _
 lpUNCServerName as ulong, _
 lpSourceName$ as ptr, _
 hEventLog as ulong

 print
 print "Open Event Log Handle: "; hEventLog

 if hEventLog = 0 then call DisplayError

 struct OldestRecord, value as ulong

 calldll #advapi32, "GetOldestEventLogRecord", _
 hEventLog As uLong, _
 OldestRecord as struct, _
 result as long

 page 1 / 5

https://www.wikispaces.com/user/view/StPendl
https://www.wikispaces.com/user/view/StPendl

Liberty BASIC Programmer's Encyc

 print
 print "Oldest Event Log result: "; result
 print "Oldest Event Log Number: "; OldestRecord.value.struct

 if result = 0 then call DisplayError

 struct NumberOfRecords, value as ulong

 calldll #advapi32, "GetNumberOfEventLogRecords", _
 hEventLog As uLong, _
 NumberOfRecords as struct, _
 result as long

 print
 print "Number of Event Log Records result: "; result
 print "Number of Event Logs: "; NumberOfRecords.value.struct

 if result = 0 then call DisplayError

 Struct pnBytesRead, value As uLong
 Struct pnMinNumberOfBytesNeeded, value As uLong

 dwReadFlags = _EVENTLOG_SEEK_READ or _EVENTLOG_FORWARDS_READ
 dwRecordOffset = OldestRecord.value.struct +
 NumberOfRecords.value.struct - 1
 nNumberOfBytesToRead = hexdec("7ffff")
 lpBuffer$ = space$(nNumberOfBytesToRead); chr$(0)

 calldll #advapi32, "ReadEventLogA", _
 hEventLog As uLong, _
 dwReadFlags As uLong, _
 dwRecordOffset As uLong, _
 lpBuffer$ As ptr , _
 nNumberOfBytesToRead As uLong, _
 pnBytesRead As Struct , _
 pnMinNumberOfBytesNeeded As struct , _
 result As long

 'print something i can check
 print
 print "Results: "
 print
 pnMinNumberOfBytesNeeded.value.struct, pnBytesRead.value.struct
 print "Buffer: "
 print left$(lpBuffer$, pnBytesRead.value.struct)

 page 2 / 5

Liberty BASIC Programmer's Encyc

 print
 print "Read Event Log result: "; result

 if result = 0 then call DisplayError

 calldll #advapi32, "CloseEventLog", _
 hEventLog as ulong, _
 result as long

 print
 print "Close Event Log result: "; result

 if result = 0 then call DisplayError

 close #advapi32
 end

sub DisplayError
 calldll #kernel32, "GetLastError", _
 ErrorCode as ulong

 dwFlags = _FORMAT_MESSAGE_FROM_SYSTEM
 nSize = 1024
 lpBuffer$ = space$(nSize); chr$(0)
 dwMessageID = ErrorCode

 calldll #kernel32, "FormatMessageA", _
 dwFlags as ulong, _
 lpSource as ulong, _
 dwMessageID as ulong, _
 dwLanguageID as ulong, _
 lpBuffer$ as ptr, _
 nSize as ulong, _
 Arguments as ulong, _
 result as ulong

 print "Error "; ErrorCode; ": "; left$(lpBuffer$, result)
end sub

Write Event Log

 open "advapi32.dll" for dll as #advapi32

 page 3 / 5

Liberty BASIC Programmer's Encyc

 struct lpStrings, string$ as ptr

 lpSourceName$ = "Application"; chr$(0)

 wType = _EVENTLOG_INFORMATION_TYPE
 ' dwEventID = 8194
 ' wCategory = 5
 wNumStrings = 1
 lpStrings.string$.struct = "LB Event Log Test"; chr$(0)

 calldll #advapi32, "RegisterEventSourceA", _
 lpUNCServerName as ulong, _ 'local computer if 0
 lpSourceName$ as ptr, _ 'source eg. application name
 handle as ulong 'handle for ReportEvent

 print
 print "Register Event Source Handle: "; handle

 if handle = 0 then call DisplayError

 calldll #advapi32, "ReportEventA", _
 handle as ulong, _ 'event log handle
 wType as word, _ 'event type
 wCategory as word, _ 'category zero
 dwEventID as ulong, _ 'event identifier
 lpUserSID as ulong, _ 'no user security identifier
 wNumStrings as word, _ 'one substitution string
 dwDataSize as ulong, _ 'no data
 lpStrings as struct, _ 'address of string array
 lpRawData as ulong, _ 'address of data
 result as long

 print
 print "Report Event Result: "; result

 if result = 0 then call DisplayError

 calldll #advapi32, "DeregisterEventSource", _
 handle as ulong, _
 result as long

 print
 print "Deregister Event Source Result: "; result

 if result = 0 then call DisplayError

 page 4 / 5

Liberty BASIC Programmer's Encyc

 print
 print "Finished ..."

 close #advapi32
 end

sub DisplayError
 calldll #kernel32, "GetLastError", _
 ErrorCode as ulong

 dwFlags = _FORMAT_MESSAGE_FROM_SYSTEM
 nSize = 1024
 lpBuffer$ = space$(nSize); chr$(0)
 dwMessageID = ErrorCode

 calldll #kernel32, "FormatMessageA", _
 dwFlags as ulong, _
 lpSource as ulong, _
 dwMessageID as ulong, _
 dwLanguageID as ulong, _
 lpBuffer$ as ptr, _
 nSize as ulong, _
 Arguments as ulong, _
 result as ulong

 print "Error "; ErrorCode; ": "; left$(lpBuffer$, result)
end sub

Read Event Log | Write Event Log

Powered by TCPDF (www.tcpdf.org)

 page 5 / 5

http://www.tcpdf.org

	EventLog

