Liberty BASIC Programmer's Encyc

Having fun with the blitter

author

Table of Contents

Having fun with the blitter

What is it?

Display Timing

Blitter Functionality

Blitter code

How fast is the Blitter?

Device Contexts

Basic Blitting

Double Buffering

Adding Text

Seasick?

Where Now?

What is it?

If you like messing with graphics the blitter could be your best friend. Back in the early days graphics used
to be written to and from a memory location by the processor itself. The PC used a videosync timer to poll
the memory and paint the graphics to the screen. You had to code carefully to be sure your drawing was
finished before the videosync kicked in.

page 1/22

Liberty BASIC Programmer's Encyc

Blitting hardware was developed to allow large areas of graphics to be copied and pasted in memory
without requiring processor cycles. This vastly improved animation and drawing that could be achieved
between videosync events.

Graphics have evolved still more and now its all "surfaces" and openGL rendering or DirectX rendering,
but you can still have a lot of fun with the blitter.

Display Timing

How fast can we show blitted graphics? Notice I said "show". A moden PC's graphics card renders screen
images at 60hz, or a frame every 16.6ms. Now the blitter is much much faster than this but there is little
point in blitting for blittings sake if the graphic image is only shown once every 16.6ms.

So its best to use the Liberty BASIC TIMER statement to control a drawing loop to slow things down and
not waste time drawing graphics that are never seen.

While the TIMER uses millisecond values you will find that 16.6ms is the smallest value it can discern.
Run the code below and see how the TIMER value jumps in 16.6ms increments. This is because Windows
updates it's clock at 60hz.

So, don't try and run your TIMER loop faster than 17ms, the TIMER statement won't run any faster.

In actual fact animation will run perfectly well at lower speed. The speed of your processor and graphics
card will determine what is achievable but stay in tune with your PC, anything between 50ms and 100ms
provide watchable animation.

for delay=1 to 60
ti menow=ti ne$("ns")
timer 1,[done]
wai t

[done]
print "Delay should be 1ns Delay is
next del ay

ctimenowti me$("nms")

Blitter Functionality
Blitting swaps one area of graphic for another. The blitter can merge, overwrite or transparently combine
the graphics. It can flip, mirror, stretch or shrink the image as it does so. Animation is achieved by moving

one image relative to the other.

Blitting is usually associated with animation though it is equally happy stretching, blending, flipping or

page 2 /22

Liberty BASIC Programmer's Encyc

compressing static images.

Blitter code

You will need to cut and paste these blitter functions to the foot of each of the following code examples.
We will run an example then explain what the functions do.

Functi on Get DC(hwhd)
Cal | DLL #user32, "GetDC', _
hwhd As ul ong, _ 'wi ndow or control handle
Get DC As ul ong "returns device context
End Function

Sub Rel easeDC hwhd, hDC
Cal | DLL#user 32, "Rel easeDC", _

hwhd As ul ong, _ 'w ndow or control handle
hDC As ulong, _ "handle of DC to delete
result As Long

End Sub

Function Creat eConpati bl eDC(hDC)
Cal | DLL #gdi 32, "Creat eConpati bl eDC", _
hDC As ul ong, _ "wi ndow DC
Creat eConpati bl eDC As ulong 'nenory DC
End Function

Sub Del et eDC hDC
Cal | DLL #gdi 32, "Del eteDC', _
hDC As ulong, _ 'nmenory DC to delete
r As | ong
End Sub

Sub StretchBlt hDCdest, x,y,w, h, hDCsrc, x2,y2, w2, h2
Cal | DLL #gdi 32, "Set StretchBlt Mode",
hDCdest As ul ong, _ ' devi ce cont ext
_ COLORONCOLOR As Long, _ 'col or reduction node
RESULT As Long
Cal | DLL #gdi 32, "StretchBlt", _

hDCdest As ulong, 'destination
x As Long, _ "destination x pos
y As Long, _ "destination y pos

page 3/22

Liberty BASIC Programmer's Encyc

w As Long, _ ‘destination wdth desired

h As Long, _ "destination height desired
hDCsrc As ul ong, _ ''source

x2 As Long, _ "X location to start from source
y2 As Long, _ 'y location to start from source
w2 As Long, _ "width desired from source

h2 As Long, _ "hei ght desired from source

_SRCCOPY As | ong, _ 'dwRasterQperation
RESULT As | ong
End Sub

Sub TransparentBlt hDCdest, x, y,w, h, hDCsr c, x2, y2, w2, h2, cr Tr anspar ent
calldll #m "TransparentBlt", _

hDCdest As ulLong, 'destination
x As Long, _ "destination x pos
y As Long, _ "destination y pos
w As Long, _ ‘destination wdth desired
h As Long, _ "destination height desired
hDCsrc As ulLong, _ ‘source
x2 As Long, _ "X location to start from source
y2 As Long, _ 'y location to start from source
w2 As Long, _ "width desired from source
h2 As Long, _ "hei ght desired from source
crTransparent as ulong, 'color to nmake transparent
result as |ong

end sub

Function Sel ect Qbj ect (hDC, hObj ect)
Cal | DLL #gdi 32, "Sel ect bj ect™, _
hDC As ul ong, _ "menory devi ce cont ext
hCbj ect As |ong, _ "handl e of object
Sel ect bject As long 'returns previously sel ected object
End Function

Function Set Pi xel (hDc, x, y, rgbCol or)
Call DIl #gdi 32, "SetPixel",
hDc as U ong, _
"the handl e of the Device context from GetDC
x as long, _ "the x coordinate to draw the pi xel
y as long, _ "the y coordinate to draw the pi xel
rgbCol or as | ong, _
Set Pi xel as | ong
End Function

Sub Set BkMode hDC, fl ag

page 4 /22

Liberty BASIC Programmer's Encyc

" 1=t ranspar ent

' 2=opaque

Cal | DLL #gdi 32, "SetBkMode", hDC As ul ong, _
flag As | ong, RESULT As | ong

End Sub

Sub Text Qut A hDc, X, Y, text$
| engt ht ext =l en(t ext $)
cal I dl'l #gdi 32, "TextQutA",

hDc as ul ong, _ " devi ce context of w ndow or graphi cbox
X as long, _ "X origin of text

Y as long, _ "y origin of text

text$ as ptr, "text string to display

| engthtext as long, 'length of text string

result as |ong "nonzero if successful

End Sub

sub Set Text Col or hDc, cr Col or
cal I dl'l #gdi 32, "SetText Col or",

hDc as ul ong, _ " devi ce context of w ndow or control
crColor as long,_ 'long integer color value

result as |ong "returns previous text color, if successful
End Sub

How fast is the Blitter?

Lets run some unrestricted code on your machine to see what blitting performance you get. The code will
create a copy of your screen, select an image into it and then blit it back to the screen repeatedly. It is
important to remember that we are not blitting directly to the screen in front of you but to the memory that
defines that screen, lets call it the screen buffer. The blitting will be very fast, run it now.

Fantastic result? unbelievably fast? you bet. On my machine which is a middle of the road laptop I
rendered the half megabyte of graphics in 420 milliseconds, that's over 2300 frames per second, wow!

Now of course you didn't see anything. First because it was a black image blitted over a black image but
more importantly the screen buffer was rendered to the LCD or Glass display much more slowly at 60
frames per second, very much slower indeed. So even if the image was changing you would only see 38 of
those 2300 frames we rendered to memory.

That's great news, it means that if we need to, we can blit in massive amounts of graphics between video
display updates.

nonai Nnw n
W ndowWN dth = 600

page 5/22

Liberty BASIC Programmer's Encyc

em

W ndowHei ght
Upper Left X (Di spl ayW dt h- W ndowW dt h) / 2
Upper LeftY (Di spl ayHei ght - W ndowHei ght)/ 2
gr aphi cbox #1.g, 50, 80, 500, 300

t ext box #1.t, 50,390, 500, 25

open "Blitter"” for graphics_nf_nsb as #1
print #1, "trapclose [quit]"

600

set up our bitnmaps, open device contexts and store our bitmaps in th

" bDC is our screen buffer, (DC handle to the graphicsbox)

print #1.g, "down; fill bl ack"
print #1.g, "getbnp bnp 0 0 500 300"
bDC=Cet DC(hwnd(#1. g))

" nDC is a copy of the screen in nenory

nDC=Cr eat eConpat i bl eDC(bDC)
hBi t map=hbnp(" bnp")
ol dBnp=Sel ect Qbj ect (nDC, hBi t nap)

[tinmel oop]

now=t i me$("ns")

for n=1 to 1000

scan

" flip the nenory inage to the screen

call StretchBlt, bDC, 0, 0, 500, 300, nDC, 0, 0, 500, 300
next n

t=ti me$("nms")-now

print #l.t,

"Rendered 439My of graphics in ";t;" MIIliseconds, ";int(1000/t*

1000) ; "

FPS"
wai t

[quit]

unl oadbnp " bnp"

call Rel easeDC hwnd(#1), gDC
call Del eteDC nDC

cl ose #1

end

Device Contexts

page 6 /22

Liberty BASIC Programmer's Encyc

The blitter is made available to us via API calls from Liberty BASIC. Obviously before we can blit
anything we need somewhere to blit from and somewhere to blit to. Typically we would blit to the screen
buffer. So how do we access this buffer?

We need to find it's address and would use an API call to do so.

gDC=Get DC(hwnd(#1. g))

Function Get DC(hwhd)
Cal | DLL #user 32, "CetDC', _
hwhd As ul ong, _ 'w ndow or control handl e
Get DC As ul ong "returns device context
End Function

This obtains a ulong number which is the pointer to the Device Context (DC) that Windows created for
our graphicbox. So the screen buffer is in fact the DC that Windows has created behind the scenes.

Now we create a copy of that DC.

nDC=Cr eat eConpat i bl eDC(gDC)

Functi on Creat eConpati bl eDC(hDC)
Cal | DLL #gdi 32, "Creat eConpati bl eDC", _
hDC As ul ong, _ "wi ndow DC
Creat eConpati bl eDC As ulong 'nenory DC
End Function

Then we fill it with some graphics by getting a handle to our "bmp" image and selecting it into the new
DC.

hBi t map=hbnp(" bnp")
ol dBnp=Sel ect Obj ect ("DC, hBi t map)

Function Sel ect Qbj ect (hDC, hObj ect)
Cal | DLL #gdi 32, "Sel ect bj ect™, _
hDC As ul ong, _ "menory devi ce cont ext
hCbj ect As |ong, _ "handl e of object
Sel ect bject As long 'returns previously sel ected object
End Function

page 7/22

Liberty BASIC Programmer's Encyc

And that's all we need to start blitting! DCs are amorphous things, if you select in a large bmp you can
have lots of graphics in one location to blit from.

Once you have finished with a DC you must release and delete it.

call Rel easeDC hwnd(#1), gDC
call Del eteDC nDC

Sub Rel easeDC hwhd, hDC
Cal | DLL#user 32, " Rel easeDC",

hwhd As ul ong, _ 'w ndow or control handl e
hDC As ulong, _ "handle of DC to delete
result As Long

End Sub

Sub Del et eDC hDC
Cal | DLL #gdi 32, "Del eteDC', _
hDC As ulong, _ '"nenory DC to delete
r As Long
End Sub

That's a whistle stop tour of DCs, check the following link for help on API and DCs under the GDI
banner.

http://Ibpe.wikispaces.com/GDI

Basic Blitting

Lets draw ourselves some graphics to blit from. We use the left 225 pixels of the screen to draw some stars
and then replicate that in the next 225 pixels giving us a 450 pixel image that will scroll without an obvious
end. Confused? Don't worry the tutorial is about blitting not game graphics (That might be next).

Then I draw a little circle in the remaining 50 pixels. Use the debugger to step through and see what's
happening. Now when I start blitting I take the first 225 pixels from the memory DC and blit them to the
buffer DC but stretch them width ways up to 500 pixels. In this way you cut out little parts of the memory
DC and fill the buffer DC. Next iteration I move the source 5 pixels to the right in the graphics DC and so
repetitively move the star background to the left.

Then I cut out the little circle and blit it a couple of times same size into the buffer. Net result a scrolling
background with two sprites moving about. Well they would be sprites if I had used TransparentBlt, notice
that the circle backgrounds overwrite when they cross over. If I had used TransparentBIt you would just
see the white circles.

page 8 /22

http://lbpe.wikispaces.com/GDI

Liberty BASIC Programmer's Encyc

nomai Nw n
W ndowW dt h 600
W ndowHei ght 600

Upper Left X (Di spl ayW dt h- W ndowW dt h) / 2
Upper LeftY (Di spl ayHei ght - W ndowHei ght)/ 2
gr aphi cbox #1.g, 50, 80, 500, 300

t ext box #1.t, 50,390, 500, 25

open "Blitter"” for graphics_nf_nsb as #1
print #1, "trapclose [quit]"

set up our bitnaps, open device contexts and store our bitmaps in th
em

bDC i s our screen buffer, (DC handle to the graphi csbox)

print #1.g, "down; fill black ; color white"
for x =1 to 50
print #1.g, "place ";int(rnd(0)*250);" ";int(rnd(0)*300)

print #1.g, "size ";int(rnd(0)*4)

print #1.g, "circle ";int(rnd(0)*3)

next X

print #1.g, "getbnp bnp 0 0 225 300"

print #1.g, "drawbnp bnp 225 0"

print #1.g, "place 475 40 ; size 1 ;circle 20"
unl oadbnp " bnp"

print #1.g, "getbnp bnp 0 0O 500 300"
bDC=Get DC(hwnd(#1. g))

nDC is a copy of the screen in nenory

nDC=Cr eat eConpat i bl eDC(bDC)
hBi t map=hbnp(" bnp")
ol dBnp=Sel ect Obj ect (n"DC, hBi t map)

set up a repeating loop to draw our graphics
x=-1
y=-1
timer 17, [timedl oop]
wai t

draw fromthe nenory to the buffer

page 9/22

Liberty BASIC Programmer's Encyc

[ti medl oop]

X=xX+1

i f x=225 then x=0

y=y+1

if y=300 then y=0

call StretchBlt, bDC, 0, 0, 500, 300, nDC, x, 0, 225, 300

call StretchBlt, bDC, 250, vy, 40, 40, nDC, 455, 20, 40, 40
call StretchBlt, bDC, 250, 300-vy, 40, 40, nDC, 455, 20, 40, 40
wai t

[quit]

unl oadbnp " bnp"

call Rel easeDC hwnd(#1), gDC
cal |l Del eteDC nDC

cl ose #1

end

So there are several call you can make BitBIt, StretchBIt PrIBIt and TransparentBIt each has it's own
strength some can flip and mirror some can't, one can do it transparently, basically pick your blitter call by
the functionality you wish.

Double Buffering

Double buffering is something you will eventually come to. When you render large or complex images or
start to render text you will find that the image starts to flicker. The solution is to double buffer. Very
simply we draw all the complex graphics to an intermediate DC and then on a regular basis blit its contents
to the screen buffer DC and leave it alone. This ensures there is a stable copy of what we want displayed
and provides rock solid graphics.

The flicker is rooted in how Windows updates it's screen, the videosync is not made available to us as
many windows may wish redrawn or updated. So the screen refresh happens randomly as far as we are
concerned. Right in the middle of drawing a line or rendering some text. But because we can blit a single
screen image so quickly with the blitter it rarely, if ever, is half drawn when the refresh occurs.

One of the other great things about blitting is that you do not use up graphics memory, each DC consumes
a finite amount of memory but after that you are just blitting between them and no other graphics memory
is consumed.

nonmai NwW n
W ndowN dth = 600
W ndowHei ght = 600

Upper Left X (Di spl ayW dt h- W ndowW dt h) / 2

page 10/22

Liberty BASIC Programmer's Encyc

UpperLeftY = (Di spl ayHei ght - WndowHei ght)/ 2
gr aphi cbox #1.g, 50, 80, 500, 300

t ext box #1.t, 50,390, 500, 25

open "Blitter"” for graphics_nf_nsb as #1
print #1, "trapclose [quit]"

set up our bitnmaps, open device contexts and store our bitmaps in th

em

print #1.g, "down; fill black ; color white"
for x =1 to 50
print #1.g, "place ";int(rnd(0)*250);" ";int(rnd(0)*300)

print #1.g, "size ";int(rnd(0)*4)

print #1.g, "circle ";int(rnd(0)*3)

next X

print #1.g, "getbnp bnp 0 0 225 300"

print #1.g, "drawbnp bnp 225 0"

print #1.g, "place 475 40 ; size 1 ;circle 20"
unl oadbnp " bnp"

print #1.g, "getbnp bnp 0 0O 500 300"

print #1.g, "getbnp bkg 0O 0O 500 300"

bDC is our screen buffer, (DC handle to the graphi csbox)
bDC=Get DC(hwnd(#1. g))

nDC is a copy of the screen in nenory (double buffer)
nDC=Cr eat eConpat i bl eDC(bDC)

hBi t map=hbnp(" bnp")
ol dBnp=Sel ect Obj ect ("DC, hBi t map)

gDC is a copy of the screen in nmenory to store reusable graphics in

our graphics pallete if you Ilike.
gDC=Cr eat eConpat i bl eDC(bDC)

we copy the screen but fill it with graphics of our choice
and | ow and behol d this anorphous data object assunes the
size of the bnp we select into it

hBi t map=hbnp(" bkg")
ol dBnp=Sel ect Obj ect (gDC, hBi t map)

page 11/22

Liberty BASIC Programmer's Encyc

' set up a repeating |loop to draw our graphics
x=-1

y=-1

timer 17, [tinmedl oop]

wai t

[ti medl oop]

scan

" first thng we do nowis draw fromthe nenory to the buffer
call StretchBlt, bDC, 0, 0, 500, 300, nDC, 0, 0, 500, 300

now draw from the graphics resource to the nenory

X=xX+1

i f x=225 then x=0

y=y+1

if y=300 then y=0

call StretchBlt, nDC, 0, 0, 500, 300, gDC, x, 0, 225, 300

call StretchBlt, nDC, 250, vy, 40, 40, gDC, 455, 20, 40, 40
call StretchBlt, nDC, 250, 300-vy, 40, 40, gDC, 455, 20, 40, 40
wai t

[quit]

unl oadbnp " bnp"

call Rel easeDC hwnd(#1), gDC
cal |l Del eteDC nDC

cl ose #1

end

Adding Text

We use another API call to render text to our DC. This action in itself triggers the need for the double
buffer. Here we create the same moving background but ignore the circle sprite and instead render two
sets of text. The text API calls firstly set the text background color to be transparent. Then they set the text
color and render the text.

nomai Nw n

'open a wi ndow and graphi cbox
W ndowW dt h = 500

W ndowHei ght = 300

graphi cbox #1.g, 0, 0, 500, 300

page 12/22

Liberty BASIC Programmer's Encyc

open "Blitting" for graphics_nf_nsb as #1
print #1, "trapclose [quit]"

" set up our device contexts (DCs, copys of the screen) and
store our various bitmaps in them

once we know the "handl es” of our DC s we can operate

" on them
print #1.g, "down; fill black ; color white"
for x =1 to 50
print #1.g, "place ";int(rnd(0)*250);" ";int(rnd(0)*300)

print #1.g, "size ";int(rnd(0)*4)
print #1.g, "circle ";int(rnd(0)*3)
next X
print #1.g, "getbnp bnp 0 0 225 300"
print #1.g, "drawbnp bnp 225 0"
print #1.g, "place 475 40 ; size 1 ;circle 20"
unl oadbnp " bnp"
print #1.g, "getbnp bnp 0 0O 500 300"
print #1.g, "getbnp bkg 0O 0O 500 300"

' bDC is our screen buffer

bDC=Get DO(hwnd(#1. g))

nDC is a copy of the screen buffer in nmenory used as a double buffer
" to collate our drawi ng operations prior to displaying.

nDC=Cr eat eConpat i bl eDC(bDC)

once you have the DC you can fill it with graphics

hBi t map=hbnp(" bnp")
ol dBnp=Sel ect Qbj ect (nDC, hBi t nap)

as this is the main drawi ng screen we set transparent text draw ng
" on. Any Text drawing will have a transparent background.

call Set Bkibde, nDC, 1

gDC is a copy of the screen in nmenory to store reusable graphics in
" our graphics pallete if you like.

page 13/22

Liberty BASIC Programmer's Encyc

gDC=Cr eat eConpat i bl eDC(bDC)
" we copy the screen but fill it with the bkg graphics

hBi t map=hbnp(" bkg")
ol dBnp=Sel ect Qbj ect (gDC, hBi t nap)

" vari abl es
x=-1

t 1=100

t 2=150

y=15

" start tined drawi ng | oop
timer 17, [draw]

wai t

[dr awj

" check for nouse or keyboard events
scan

" blit the double buffer to the buffer so that it is visible and stab
e for as long as possible

" StretchBlt takes data fromthe resource DC gDC and stretches it to f
i1l the target DC, nDC.

" There is also TransparentBlt if you wish to draw transparent data. Y
ou can flip, mrror

" and squish the graphics if you choose the correct Blit operation.
call StretchBlt, bDC, 0, 0, 500, 300, nDC, 0, 0, 500, 300
" now start to redraw everything on the buffer
" first slip the background xy a little to the left
X=x+1
if x=225 then x=0
" now draw t he backgrond fromgDC stretching it to fill nDC

the source, gDC can be flipped, reversed as it is drawn if you choos

page 14 /22

Liberty BASIC Programmer's Encyc

e negative
" wval ues.
call StretchBlt, nDC, 0, 0, 500, 300, gDC, x, 0, 225, 300

" slip the textl xy to the left
t1=t1+1
if t1>500 then t1=-100

' set the txt color and draw it

cal | Set Text Col or, nDC, (255*256* 256) +(0* 256) +(0) ' bl ue
text$ = "Text string to display."

call TextQutA, nDC, t1, 150,text$

slip the text2 xy up
y=y-1

if y<-20 then y=320

" set thesecond txt color and draw it

cal | Set Text Col or, nDC, (0*256* 256) +(255* 256) +(0) ' gr een

text$ = "Yet nore text."

call TextQutA nDC t2,y,text$
wai t

[quit]

timer O

call Rel easeDC hwnd(#1.g), bDC
call Rel easeDC hwnd(#1.qg), nDC
call Rel easeDC hwnd(#1.g), gDC
call Del eteDC bDC

call Del eteDC nDC

call Del et eDC gDC

unl oadbnp "bkg"

unl oadbnp " bnp"

cl ose #1

end

Seasick?

Ok scrolling stars and text gets a bit boring. Do you get seasick? Check out this rolling ocean. Use the
mouse or arrow keys to turn and speed up or slow down. It kinda gives the impression of being on a rolling
ocean swell. The ocean.bmp has four strips for the horizon which I blit into the top of the picture
depending on what the heading is. Then I blit four copies of the sea section. I roll these up and down using
a sine curve and I also roll them forward to create more movement. The further away section rolls least and
they double up their movement the nearer the bottom of the screen they are.

page 15/22

Liberty BASIC Programmer's Encyc

Its just like having multiple backgrounds in the sprite engine. There is lots of time to draw sprites on top of
this moving background. Doing so creates a pretty cool game environment.

Copy this bmp to your own PC

nonmai N\W n
timerval ue=42
true=1

fal se=0

headi ng=0

t urn=0
speed=0

page 16 /22

Liberty BASIC Programmer's Encyc

em

m dx=400
m dy=300
posx=40
posy=40

now open our w ndow as a full screen popup wi ndow and set its event
| abel s

W ndowWw dt h
W ndowHei ght
Upper Left X (Di spl ayW dt h- W ndowW dt h) / 2
Upper LeftY (Di spl ayHei ght - W ndowHei ght)/ 2
gr aphi cbox #1.g, O, 0, 800, 600

open "Ccean" for w ndow popup as #l1

print #1, "trapclose [quit]"

print #1.g, "when nouseMve [novenouse]"

800
600

open the dll file used for TransparentBlt

open "meing32.dl 1" for dll as #m

set up our bitmaps, open device contexts and store our bitmaps in th

print #1.g, "down ; fill black"
print #1.g, "getbnp bnp 0 0O 800 600"
| oadbnp "ocean", "ocean. bnp"

" bDC is our screen buffer, (DC handle to the graphicsbox)

bDC=Get DC(hwnd(#1. g))

nDC is a copy of the screen in nenory (double buffer)

nDC=Cr eat eConpat i bl eDC(bDC)
hBi t map=hbnp(" bnp")
ol dBnp=Sel ect Qbj ect (nDC, hBi t nap)

gDC is a copy of the screen in nmenory to store reusable graphics in

our graphics pallete if you liKke.

gDC=Cr eat eConpat i bl eDC(bDC)

page 17/22

Liberty BASIC Programmer's Encyc

we copy the screen but fill it with graphics of our choice
and | ow and behol d this anorphous data object assunes the
size of the bnp we select into it

hBi t map=hbnp(" ocean")
ol dBnp=Sel ect Qbj ect (gDC, hBi t nap)

start the gane tiner

timer tinmervalue , [draw oop]
wai t

the main drawi ng | oop

[dr awl oop]

read keyboard and nouse events

scan

" flip the nDC to the bDC so that it is visible and stable for as |ong
as possible

call StretchBlt, bDC, 0, 0, 800, 600, nDC, 0, 0, 800, 600

now start to redraw everything to nDC from gDC

draw t he horizon

headi ng=headi ng+t urn

i f headi ng<O t hen headi ng=headi ng+3200

i f headi ng>3199 t hen headi ng=headi ng- 3200

hor i zonX=headi ng- (i nt (headi ng/ 800)) *800

hori zonY=i nt (headi ng/ 800) *100

hori zonZ=hori zonY+100

i f horizonzZ=400 then horizonz=0

call StretchBlt, nDC, 0, 0, 800- hori zonX, 200, gDC, hori zonX,
hori zonY, 800- hori zonX, 100

call StretchBlt, nDC, 800- hori zonX, 0, hori zonX, 200, gDC, 0,
hori zonZ, hori zonX, 100

" draw t he sea
wavel=int(sin(roll/57.29577951)* (40- speed))
wavez2=i nt (wavel/ 2)

page 18 /22

Liberty BASIC Programmer's Encyc

wave3=i nt (wavel/ 4)
wave4=i nt (wavel/ 8)
roll =rol | +8+speed
if roll>=360 then roll=0

seal=seal- (speed/ 2)
sea2=sea2- (speed/ 4)
sea3=sea3- (speed/ 8)
sead=sead- (speed/ 16)
i f seal<400 then seal=500
i f sea2<400 then sea2=500
i f sea3<400 then sea3=500
i f sea4<400 then sead4=500

turn4=tur nd+(turn/ 2)
turn3=t ur n3+(turn/ 4)
turn2=t ur n2+(turn/ 8)
turnl=turnl+(turn/16)

if turn4<0 then turn4=turn4+800
if turn4>799 then turn4=turn4-800
if turn3<0 then turn3=turn3+800
if turn3>799 then turn3=turn3-800
if turn2<0 then turn2=turn2+800
if turn2>799 then turn2=turn2-800
if turnl<O then turnl=turnl+800
if turnl>799 then turnl=turnl-800

call StretchBlt, nDC, 0,200, 800-int (turn4), 100, gDC, i nt (
turnd),int(sea4),800-int(turn4), 100

call StretchBlt, nDC, 800-int(turn4), 200,int(turn4), 100, gDC, 0,
int(sead),int(turn4), 100

call StretchBlt, nDC, 0, 280+wave3, 800-i nt (turn3), 120, gDC, i nt (
turn3),int(seal),800-int(turn3), 100

call StretchBlt, nDC, 800-int(turn3), 280+wave3,int(turn3), 120,
gDC, 0,int(seal3),int(turn3), 100

call StretchBlt, nDC, 0, 380+wave2, 800-i nt (turn2), 150, gDC, i nt (
turn2),int(sea2), 800-int(turn2), 100

call StretchBlt, nDC, 800-int(turn2), 380+wave2,int(turn2), 150,
gDC, 0,int(sea2),int(turn2), 100

call StretchBlt, nDC, 0, 480+wavel, 800-i nt (turnl), 150, gDC, i nt (
turnl),int(seal), 800-int(turnl), 100

call StretchBlt, nDC, 800-int(turnl), 480+wavel,int(turnl), 150,
gDC, 0,int(seal),int(turnl), 100

read the keyboard

page 19/22

Liberty BASIC Programmer's Encyc

| ong

| ong

| ong

| ong

"escape/ quit
#user 32, "Get AsyncKeySt ate", VK ESCAPE AS | ong, k1 AS

Cal | DLL
if k1<O

"left
Cal | DLL

if kl1<O

"right
Cal | DLL

if k1<O

1 up
Cal | DLL
if k1<O

" down
Cal | DLL

if ki1<O
wai t

then [quit]

#user 32, "Cet AsyncKeyState", VK LEFT AS | ong, k1 AS

then [left]

#user 32, "Get AsyncKeyState", VK RIGHT AS | ong, k1 AS

then [right]

#user 32, "Cet AsyncKeyState", VK UP AS | ong, kl AS | ong

then [accel erat €]

#user 32, "Cet AsyncKeyState", VK DOMAN AS | ong, k1 AS

t hen [brake]

[rovenouse]

i f MouseX<oldx then [left]

i f MouseX>ol dx then [right]

i f MouseY<ol dy then [accel erate]
i f MouseY>ol dy then [brake]

wai t

[left]

sel ect case turn
case -4

turn=-8

case -2

turn=-4

case -1

turn=-2

case O

turn=-1

case 1

turn=0

case 2

turn=1

page 20/ 22

Liberty BASIC Programmer's Encyc

case 4
turn=2
case 8
turn=4
end sel ect
ol dx=MbuseX
wai t

[right]
sel ect case turn
case -8
turn=-4
case -4
turn=-2
case -2
turn=-1
case -1
turn=0
case 0
turn=1
case 1
turn=2
case 2
turn=4
case 4
turn=8
end sel ect
ol dx=MbuseX
wai t

[accel erat e]
speed=m n(32, speed+1)
ol dy=MbuseY

wai t

[br ake]
speed=max(1, speed-1)
ol dy=MouseY

wai t

[quit]
unl oadbnp "ocean”
unl oadbnp " bnp"

call Rel easeDC hwnd(#1),

call Del eteDC nDC

page 21 /22

Liberty BASIC Programmer's Encyc

call Del eteDC gDC
cl ose #1

cl ose #m

end

Where Now?

Actually the only barrier is your imagination.

Happy coding

rodbird @hotmail.com

Table of Contents
Having fun with the blitter
What is it?

Display Timing

Blitter Functionality

Blitter code

How fast is the Blitter?

Device Contexts

Basic Blitting
Double Buffering

Adding Text

Seasick?

Where Now?

page 22 /22

mailto:rodbird@hotmail.com
http://www.tcpdf.org

	Fun with the blitter

