
Liberty BASIC Programmer's Encyc

Having fun with the blitter
author

Table of Contents
Having fun with the blitter

What is it?

Display Timing

Blitter Functionality

Blitter code

How fast is the Blitter?

Device Contexts

Basic Blitting

Double Buffering

Adding Text

Seasick?

Where Now?

What is it?

If you like messing with graphics the blitter could be your best friend. Back in the early days graphics used
to be written to and from a memory location by the processor itself. The PC used a videosync timer to poll
the memory and paint the graphics to the screen. You had to code carefully to be sure your drawing was
finished before the videosync kicked in.

 page 1 / 22

Liberty BASIC Programmer's Encyc

Blitting hardware was developed to allow large areas of graphics to be copied and pasted in memory
without requiring processor cycles. This vastly improved animation and drawing that could be achieved
between videosync events.

Graphics have evolved still more and now its all "surfaces" and openGL rendering or DirectX rendering,
but you can still have a lot of fun with the blitter.

Display Timing

How fast can we show blitted graphics? Notice I said "show". A moden PC's graphics card renders screen
images at 60hz, or a frame every 16.6ms. Now the blitter is much much faster than this but there is little
point in blitting for blittings sake if the graphic image is only shown once every 16.6ms.

So its best to use the Liberty BASIC TIMER statement to control a drawing loop to slow things down and
not waste time drawing graphics that are never seen.

While the TIMER uses millisecond values you will find that 16.6ms is the smallest value it can discern.
Run the code below and see how the TIMER value jumps in 16.6ms increments. This is because Windows
updates it's clock at 60hz.

So, don't try and run your TIMER loop faster than 17ms, the TIMER statement won't run any faster.

In actual fact animation will run perfectly well at lower speed. The speed of your processor and graphics
card will determine what is achievable but stay in tune with your PC, anything between 50ms and 100ms
provide watchable animation.

for delay=1 to 60
 timenow=time$("ms")
 timer 1,[done]
 wait

 [done]
 print "Delay should be 1ms Delay is ";timenow-time$("ms")
next delay

Blitter Functionality

Blitting swaps one area of graphic for another. The blitter can merge, overwrite or transparently combine
the graphics. It can flip, mirror, stretch or shrink the image as it does so. Animation is achieved by moving
one image relative to the other.

Blitting is usually associated with animation though it is equally happy stretching, blending, flipping or

 page 2 / 22

Liberty BASIC Programmer's Encyc

compressing static images.

Blitter code

You will need to cut and paste these blitter functions to the foot of each of the following code examples.
We will run an example then explain what the functions do.

'=============================Window and DC functions=================
================
Function GetDC(hWnd)
 CallDLL #user32, "GetDC",_
 hWnd As ulong,_ 'window or control handle
 GetDC As ulong 'returns device context
 End Function

Sub ReleaseDC hWnd, hDC
 CallDLL#user32,"ReleaseDC",_
 hWnd As ulong,_ 'window or control handle
 hDC As ulong,_ 'handle of DC to delete
 result As Long
 End Sub

Function CreateCompatibleDC(hDC)
 CallDLL #gdi32,"CreateCompatibleDC",_
 hDC As ulong,_ 'window DC
 CreateCompatibleDC As ulong 'memory DC
 End Function

Sub DeleteDC hDC
 CallDLL #gdi32, "DeleteDC",_
 hDC As ulong,_ 'memory DC to delete
 r As long
 End Sub

Sub StretchBlt hDCdest,x,y,w,h,hDCsrc,x2,y2,w2,h2
 CallDLL #gdi32, "SetStretchBltMode",_
 hDCdest As ulong,_ 'device context
 COLORONCOLOR As Long, 'color reduction mode
 RESULT As Long
 CallDLL #gdi32, "StretchBlt",_
 hDCdest As ulong,_ 'destination
 x As Long,_ 'destination x pos
 y As Long,_ 'destination y pos

 page 3 / 22

Liberty BASIC Programmer's Encyc

 w As Long,_ 'destination width desired
 h As Long,_ 'destination height desired
 hDCsrc As ulong,_ 'source
 x2 As Long,_ 'x location to start from source
 y2 As Long,_ 'y location to start from source
 w2 As Long,_ 'width desired from source
 h2 As Long,_ 'height desired from source
 SRCCOPY As long, 'dwRasterOperation
 RESULT As long
 End Sub

Sub TransparentBlt hDCdest,x,y,w,h,hDCsrc,x2,y2,w2,h2,crTransparent
 calldll #m, "TransparentBlt",_
 hDCdest As uLong,_ 'destination
 x As Long,_ 'destination x pos
 y As Long,_ 'destination y pos
 w As Long,_ 'destination width desired
 h As Long,_ 'destination height desired
 hDCsrc As uLong,_ 'source
 x2 As Long,_ 'x location to start from source
 y2 As Long,_ 'y location to start from source
 w2 As Long,_ 'width desired from source
 h2 As Long,_ 'height desired from source
 crTransparent as ulong,_ 'color to make transparent
 result as long
 end sub

Function SelectObject(hDC,hObject)
 CallDLL #gdi32,"SelectObject",_
 hDC As ulong,_ 'memory device context
 hObject As long,_ 'handle of object
 SelectObject As long 'returns previously selected object
 End Function

Function SetPixel(hDc,x,y,rgbColor)
 CallDll #gdi32, "SetPixel",_
 hDc as Ulong,_
'the handle of the Device context from GetDC
 x as long,_ 'the x coordinate to draw the pixel
 y as long,_ 'the y coordinate to draw the pixel
 rgbColor as long,_
 SetPixel as long
 End Function

Sub SetBkMode hDC, flag

 page 4 / 22

Liberty BASIC Programmer's Encyc

 '1=transparent
 '2=opaque
 CallDLL #gdi32, "SetBkMode",hDC As ulong,_
 flag As long, RESULT As long
 End Sub

Sub TextOutA hDc,X,Y,text$
 lengthtext=len(text$)
 calldll #gdi32, "TextOutA", _
 hDc as ulong,_ 'device context of window or graphicbox
 X as long,_ 'x origin of text
 Y as long,_ 'y origin of text
 text$ as ptr,_ 'text string to display
 lengthtext as long,_'length of text string
 result as long 'nonzero if successful
 End Sub

sub SetTextColor hDc,crColor
 calldll #gdi32, "SetTextColor", _
 hDc as ulong,_ 'device context of window or control
 crColor as long,_ 'long integer color value
 result as long 'returns previous text color, if successful
 End Sub

How fast is the Blitter?

Lets run some unrestricted code on your machine to see what blitting performance you get. The code will
create a copy of your screen, select an image into it and then blit it back to the screen repeatedly. It is
important to remember that we are not blitting directly to the screen in front of you but to the memory that
defines that screen, lets call it the screen buffer. The blitting will be very fast, run it now.

Fantastic result? unbelievably fast? you bet. On my machine which is a middle of the road laptop I
rendered the half megabyte of graphics in 420 milliseconds, that's over 2300 frames per second, wow!

Now of course you didn't see anything. First because it was a black image blitted over a black image but
more importantly the screen buffer was rendered to the LCD or Glass display much more slowly at 60
frames per second, very much slower indeed. So even if the image was changing you would only see 38 of
those 2300 frames we rendered to memory.

That's great news, it means that if we need to, we can blit in massive amounts of graphics between video
display updates.

 nomainwin
 WindowWidth = 600

 page 5 / 22

Liberty BASIC Programmer's Encyc

 WindowHeight = 600
 UpperLeftX = (DisplayWidth-WindowWidth)/2
 UpperLeftY = (DisplayHeight-WindowHeight)/2
 graphicbox #1.g, 50,80,500,300
 textbox #1.t, 50,390, 500,25
 open "Blitter" for graphics_nf_nsb as #1
 print #1, "trapclose [quit]"

' set up our bitmaps, open device contexts and store our bitmaps in th
em

 ' bDC is our screen buffer, (DC handle to the graphicsbox)

 print #1.g, "down; fill black"
 print #1.g, "getbmp bmp 0 0 500 300"
 bDC=GetDC(hwnd(#1.g))

 ' mDC is a copy of the screen in memory

 mDC=CreateCompatibleDC(bDC)
 hBitmap=hbmp("bmp")
 oldBmp=SelectObject(mDC,hBitmap)

 [timeloop]
 now=time$("ms")
 for n= 1 to 1000
 scan
 ' flip the memory image to the screen
 call StretchBlt,bDC,0,0,500,300,mDC,0,0,500,300
 next n
 t=time$("ms")-now
 print #1.t,
"Rendered 439Mb of graphics in ";t;" Milliseconds, ";int(1000/t*
1000);" FPS"
 wait

 [quit]
 unloadbmp "bmp"
 call ReleaseDC hwnd(#1), gDC
 call DeleteDC mDC
 close #1
 end

Device Contexts

 page 6 / 22

Liberty BASIC Programmer's Encyc

The blitter is made available to us via API calls from Liberty BASIC. Obviously before we can blit
anything we need somewhere to blit from and somewhere to blit to. Typically we would blit to the screen
buffer. So how do we access this buffer?

We need to find it's address and would use an API call to do so.

gDC=GetDC(hwnd(#1.g))

Function GetDC(hWnd)
 CallDLL #user32, "GetDC",_
 hWnd As ulong,_ 'window or control handle
 GetDC As ulong 'returns device context
 End Function

This obtains a ulong number which is the pointer to the Device Context (DC) that Windows created for
our graphicbox. So the screen buffer is in fact the DC that Windows has created behind the scenes.

Now we create a copy of that DC.

mDC=CreateCompatibleDC(gDC)

Function CreateCompatibleDC(hDC)
 CallDLL #gdi32,"CreateCompatibleDC",_
 hDC As ulong,_ 'window DC
 CreateCompatibleDC As ulong 'memory DC
 End Function

Then we fill it with some graphics by getting a handle to our "bmp" image and selecting it into the new
DC.

hBitmap=hbmp("bmp")
oldBmp=SelectObject(mDC,hBitmap)

Function SelectObject(hDC,hObject)
 CallDLL #gdi32,"SelectObject",_
 hDC As ulong,_ 'memory device context
 hObject As long,_ 'handle of object
 SelectObject As long 'returns previously selected object
 End Function

 page 7 / 22

Liberty BASIC Programmer's Encyc

And that's all we need to start blitting! DCs are amorphous things, if you select in a large bmp you can
have lots of graphics in one location to blit from.

Once you have finished with a DC you must release and delete it.

call ReleaseDC hwnd(#1), gDC
call DeleteDC mDC

Sub ReleaseDC hWnd, hDC
 CallDLL#user32,"ReleaseDC",_
 hWnd As ulong,_ 'window or control handle
 hDC As ulong,_ 'handle of DC to delete
 result As Long
 End Sub

Sub DeleteDC hDC
 CallDLL #gdi32, "DeleteDC",_
 hDC As ulong,_ 'memory DC to delete
 r As Long
 End Sub

That's a whistle stop tour of DCs, check the following link for help on API and DCs under the GDI
banner.

http://lbpe.wikispaces.com/GDI

Basic Blitting

Lets draw ourselves some graphics to blit from. We use the left 225 pixels of the screen to draw some stars
and then replicate that in the next 225 pixels giving us a 450 pixel image that will scroll without an obvious
end. Confused? Don't worry the tutorial is about blitting not game graphics (That might be next).

Then I draw a little circle in the remaining 50 pixels. Use the debugger to step through and see what's
happening. Now when I start blitting I take the first 225 pixels from the memory DC and blit them to the
buffer DC but stretch them width ways up to 500 pixels. In this way you cut out little parts of the memory
DC and fill the buffer DC. Next iteration I move the source 5 pixels to the right in the graphics DC and so
repetitively move the star background to the left.

Then I cut out the little circle and blit it a couple of times same size into the buffer. Net result a scrolling
background with two sprites moving about. Well they would be sprites if I had used TransparentBlt, notice
that the circle backgrounds overwrite when they cross over. If I had used TransparentBlt you would just
see the white circles.

 page 8 / 22

http://lbpe.wikispaces.com/GDI

Liberty BASIC Programmer's Encyc

 nomainwin
 WindowWidth = 600
 WindowHeight = 600
 UpperLeftX = (DisplayWidth-WindowWidth)/2
 UpperLeftY = (DisplayHeight-WindowHeight)/2
 graphicbox #1.g, 50,80,500,300
 textbox #1.t, 50,390, 500,25
 open "Blitter" for graphics_nf_nsb as #1
 print #1, "trapclose [quit]"

' set up our bitmaps, open device contexts and store our bitmaps in th
em

 ' bDC is our screen buffer, (DC handle to the graphicsbox)

 print #1.g, "down; fill black ; color white"
 for x = 1 to 50
 print #1.g, "place ";int(rnd(0)*250);" ";int(rnd(0)*300)
 print #1.g, "size ";int(rnd(0)*4)
 print #1.g, "circle ";int(rnd(0)*3)
 next x
 print #1.g, "getbmp bmp 0 0 225 300"
 print #1.g, "drawbmp bmp 225 0"
 print #1.g, "place 475 40 ; size 1 ;circle 20"
 unloadbmp "bmp"
 print #1.g, "getbmp bmp 0 0 500 300"
 bDC=GetDC(hwnd(#1.g))

 ' mDC is a copy of the screen in memory

 mDC=CreateCompatibleDC(bDC)
 hBitmap=hbmp("bmp")
 oldBmp=SelectObject(mDC,hBitmap)

 ' set up a repeating loop to draw our graphics
 x=-1
 y=-1
 timer 17, [timedloop]
 wait

 ' draw from the memory to the buffer

 page 9 / 22

Liberty BASIC Programmer's Encyc

 [timedloop]
 x=x+1
 if x=225 then x=0
 y=y+1
 if y=300 then y=0
 call StretchBlt,bDC,0,0,500,300,mDC,x,0,225,300
 call StretchBlt,bDC,250,y,40,40,mDC,455,20,40,40
 call StretchBlt,bDC,250,300-y,40,40,mDC,455,20,40,40
 wait

 [quit]
 unloadbmp "bmp"
 call ReleaseDC hwnd(#1), gDC
 call DeleteDC mDC
 close #1
 end

So there are several call you can make BitBlt, StretchBlt PrlBlt and TransparentBlt each has it's own
strength some can flip and mirror some can't, one can do it transparently, basically pick your blitter call by
the functionality you wish.

Double Buffering

Double buffering is something you will eventually come to. When you render large or complex images or
start to render text you will find that the image starts to flicker. The solution is to double buffer. Very
simply we draw all the complex graphics to an intermediate DC and then on a regular basis blit its contents
to the screen buffer DC and leave it alone. This ensures there is a stable copy of what we want displayed
and provides rock solid graphics.

The flicker is rooted in how Windows updates it's screen, the videosync is not made available to us as
many windows may wish redrawn or updated. So the screen refresh happens randomly as far as we are
concerned. Right in the middle of drawing a line or rendering some text. But because we can blit a single
screen image so quickly with the blitter it rarely, if ever, is half drawn when the refresh occurs.

One of the other great things about blitting is that you do not use up graphics memory, each DC consumes
a finite amount of memory but after that you are just blitting between them and no other graphics memory
is consumed.

 nomainwin
 WindowWidth = 600
 WindowHeight = 600
 UpperLeftX = (DisplayWidth-WindowWidth)/2

 page 10 / 22

Liberty BASIC Programmer's Encyc

 UpperLeftY = (DisplayHeight-WindowHeight)/2
 graphicbox #1.g, 50,80,500,300
 textbox #1.t, 50,390, 500,25
 open "Blitter" for graphics_nf_nsb as #1
 print #1, "trapclose [quit]"

' set up our bitmaps, open device contexts and store our bitmaps in th
em

 print #1.g, "down; fill black ; color white"
 for x = 1 to 50
 print #1.g, "place ";int(rnd(0)*250);" ";int(rnd(0)*300)
 print #1.g, "size ";int(rnd(0)*4)
 print #1.g, "circle ";int(rnd(0)*3)
 next x
 print #1.g, "getbmp bmp 0 0 225 300"
 print #1.g, "drawbmp bmp 225 0"
 print #1.g, "place 475 40 ; size 1 ;circle 20"
 unloadbmp "bmp"
 print #1.g, "getbmp bmp 0 0 500 300"
 print #1.g, "getbmp bkg 0 0 500 300"

 ' bDC is our screen buffer, (DC handle to the graphicsbox)

 bDC=GetDC(hwnd(#1.g))

 ' mDC is a copy of the screen in memory (double buffer)

 mDC=CreateCompatibleDC(bDC)
 hBitmap=hbmp("bmp")
 oldBmp=SelectObject(mDC,hBitmap)

' gDC is a copy of the screen in memory to store reusable graphics in
 ' our graphics pallete if you like.

 gDC=CreateCompatibleDC(bDC)

 ' we copy the screen but fill it with graphics of our choice
 ' and low and behold this amorphous data object assumes the
 ' size of the bmp we select into it

 hBitmap=hbmp("bkg")
 oldBmp=SelectObject(gDC,hBitmap)

 page 11 / 22

Liberty BASIC Programmer's Encyc

 ' set up a repeating loop to draw our graphics
 x=-1
 y=-1
 timer 17, [timedloop]
 wait

 [timedloop]
 scan
 ' first thng we do now is draw from the memory to the buffer
 call StretchBlt,bDC,0,0,500,300,mDC,0,0,500,300

 ' now draw from the graphics resource to the memory

 x=x+1
 if x=225 then x=0
 y=y+1
 if y=300 then y=0
 call StretchBlt,mDC,0,0,500,300,gDC,x,0,225,300
 call StretchBlt,mDC,250,y,40,40,gDC,455,20,40,40
 call StretchBlt,mDC,250,300-y,40,40,gDC,455,20,40,40
 wait

 [quit]
 unloadbmp "bmp"
 call ReleaseDC hwnd(#1), gDC
 call DeleteDC mDC
 close #1
 end

Adding Text

We use another API call to render text to our DC. This action in itself triggers the need for the double
buffer. Here we create the same moving background but ignore the circle sprite and instead render two
sets of text. The text API calls firstly set the text background color to be transparent. Then they set the text
color and render the text.

 nomainwin
 'open a window and graphicbox
 WindowWidth = 500
 WindowHeight = 300
 graphicbox #1.g, 0, 0, 500, 300

 page 12 / 22

Liberty BASIC Programmer's Encyc

 open "Blitting" for graphics_nf_nsb as #1
 print #1, "trapclose [quit]"

 ' set up our device contexts (DCs, copys of the screen) and
 ' store our various bitmaps in them
 ' once we know the "handles" of our DC's we can operate
 ' on them.

 print #1.g, "down; fill black ; color white"
 for x = 1 to 50
 print #1.g, "place ";int(rnd(0)*250);" ";int(rnd(0)*300)
 print #1.g, "size ";int(rnd(0)*4)
 print #1.g, "circle ";int(rnd(0)*3)
 next x
 print #1.g, "getbmp bmp 0 0 225 300"
 print #1.g, "drawbmp bmp 225 0"
 print #1.g, "place 475 40 ; size 1 ;circle 20"
 unloadbmp "bmp"
 print #1.g, "getbmp bmp 0 0 500 300"
 print #1.g, "getbmp bkg 0 0 500 300"

 ' bDC is our screen buffer

 bDC=GetDC(hwnd(#1.g))

' mDC is a copy of the screen buffer in memory used as a double buffer
 ' to collate our drawing operations prior to displaying.

 mDC=CreateCompatibleDC(bDC)

 ' once you have the DC you can fill it with graphics

 hBitmap=hbmp("bmp")
 oldBmp=SelectObject(mDC,hBitmap)

' as this is the main drawing screen we set transparent text drawing
 ' on. Any Text drawing will have a transparent background.

 call SetBkMode,mDC,1

' gDC is a copy of the screen in memory to store reusable graphics in
 ' our graphics pallete if you like.

 page 13 / 22

Liberty BASIC Programmer's Encyc

 gDC=CreateCompatibleDC(bDC)

 ' we copy the screen but fill it with the bkg graphics

 hBitmap=hbmp("bkg")
 oldBmp=SelectObject(gDC,hBitmap)

 ' variables
 x=-1
 t1=100
 t2=150
 y=15

 ' start timed drawing loop
 timer 17, [draw]
 wait

 [draw]

 ' check for mouse or keyboard events
 scan

' blit the double buffer to the buffer so that it is visible and stabl
e for as long as possible

' StretchBlt takes data from the resource DC gDC and stretches it to f
ill the target DC, mDC.

' There is also TransparentBlt if you wish to draw transparent data. Y
ou can flip, mirror

' and squish the graphics if you choose the correct Blit operation.

 call StretchBlt,bDC,0,0,500,300,mDC,0,0,500,300

 ' now start to redraw everything on the buffer

 ' first slip the background xy a little to the left
 x=x+1
 if x=225 then x=0

 ' now draw the backgrond from gDC stretching it to fill mDC

' the source, gDC can be flipped, reversed as it is drawn if you choos

 page 14 / 22

Liberty BASIC Programmer's Encyc

e negative
 ' values.
 call StretchBlt,mDC,0,0,500,300,gDC,x,0,225,300

 ' slip the text1 xy to the left
 t1=t1+1
 if t1>500 then t1=-100

 ' set the txt color and draw it
 call SetTextColor,mDC,(255*256*256)+(0*256)+(0)'blue
 text$ = "Text string to display."
 call TextOutA,mDC,t1,150,text$

 ' slip the text2 xy up
 y=y-1
 if y<-20 then y=320

 ' set thesecond txt color and draw it
 call SetTextColor,mDC,(0*256*256)+(255*256)+(0)'green
 text$ = "Yet more text."
 call TextOutA,mDC,t2,y,text$
 wait

 [quit]
 timer 0
 call ReleaseDC hwnd(#1.g), bDC
 call ReleaseDC hwnd(#1.g), mDC
 call ReleaseDC hwnd(#1.g), gDC
 call DeleteDC bDC
 call DeleteDC mDC
 call DeleteDC gDC
 unloadbmp "bkg"
 unloadbmp "bmp"
 close #1
 end

Seasick?

Ok scrolling stars and text gets a bit boring. Do you get seasick? Check out this rolling ocean. Use the
mouse or arrow keys to turn and speed up or slow down. It kinda gives the impression of being on a rolling
ocean swell. The ocean.bmp has four strips for the horizon which I blit into the top of the picture
depending on what the heading is. Then I blit four copies of the sea section. I roll these up and down using
a sine curve and I also roll them forward to create more movement. The further away section rolls least and
they double up their movement the nearer the bottom of the screen they are.

 page 15 / 22

Liberty BASIC Programmer's Encyc

Its just like having multiple backgrounds in the sprite engine. There is lots of time to draw sprites on top of
this moving background. Doing so creates a pretty cool game environment.

Copy this bmp to your own PC

 nomainwin
 timervalue=42
 true=1
 false=0
 heading=0
 turn=0
 speed=0

 page 16 / 22

Liberty BASIC Programmer's Encyc

 midx=400
 midy=300
 posx=40
 posy=40

' now open our window as a full screen popup window and set its event
labels

 WindowWidth = 800
 WindowHeight = 600
 UpperLeftX = (DisplayWidth-WindowWidth)/2
 UpperLeftY = (DisplayHeight-WindowHeight)/2
 graphicbox #1.g, 0,0,800,600
 open "Ocean" for window_popup as #1
 print #1, "trapclose [quit]"
 print #1.g, "when mouseMove [movemouse]"

 ' open the dll file used for TransparentBlt

 open "msimg32.dll" for dll as #m

' set up our bitmaps, open device contexts and store our bitmaps in th
em
 print #1.g, "down ; fill black"
 print #1.g, "getbmp bmp 0 0 800 600"
 loadbmp "ocean","ocean.bmp"

 ' bDC is our screen buffer, (DC handle to the graphicsbox)

 bDC=GetDC(hwnd(#1.g))

 ' mDC is a copy of the screen in memory (double buffer)

 mDC=CreateCompatibleDC(bDC)
 hBitmap=hbmp("bmp")
 oldBmp=SelectObject(mDC,hBitmap)

' gDC is a copy of the screen in memory to store reusable graphics in
 ' our graphics pallete if you like.

 gDC=CreateCompatibleDC(bDC)

 page 17 / 22

Liberty BASIC Programmer's Encyc

 ' we copy the screen but fill it with graphics of our choice
 ' and low and behold this amorphous data object assumes the
 ' size of the bmp we select into it

 hBitmap=hbmp("ocean")
 oldBmp=SelectObject(gDC,hBitmap)

 ' start the game timer

 timer timervalue , [drawloop]
 wait

 ' the main drawing loop

 [drawloop]

 ' read keyboard and mouse events

 scan

' flip the mDC to the bDC so that it is visible and stable for as long
 as possible

 call StretchBlt,bDC,0,0,800,600,mDC,0,0,800,600

 ' now start to redraw everything to mDC from gDC

 ' draw the horizon
 heading=heading+turn
 if heading<0 then heading=heading+3200
 if heading>3199 then heading=heading-3200
 horizonX=heading-(int(heading/800))*800
 horizonY=int(heading/800)*100
 horizonZ=horizonY+100
 if horizonZ=400 then horizonZ=0
 call StretchBlt,mDC,0,0,800-horizonX,200,gDC,horizonX,
horizonY,800-horizonX,100
 call StretchBlt,mDC,800-horizonX,0,horizonX,200,gDC,0,
horizonZ,horizonX,100

 ' draw the sea
 wave1=int(sin(roll/57.29577951)*(40-speed))
 wave2=int(wave1/2)

 page 18 / 22

Liberty BASIC Programmer's Encyc

 wave3=int(wave1/4)
 wave4=int(wave1/8)
 roll=roll+8+speed
 if roll>=360 then roll=0

 sea1=sea1-(speed/2)
 sea2=sea2-(speed/4)
 sea3=sea3-(speed/8)
 sea4=sea4-(speed/16)
 if sea1<400 then sea1=500
 if sea2<400 then sea2=500
 if sea3<400 then sea3=500
 if sea4<400 then sea4=500

 turn4=turn4+(turn/2)
 turn3=turn3+(turn/4)
 turn2=turn2+(turn/8)
 turn1=turn1+(turn/16)
 if turn4<0 then turn4=turn4+800
 if turn4>799 then turn4=turn4-800
 if turn3<0 then turn3=turn3+800
 if turn3>799 then turn3=turn3-800
 if turn2<0 then turn2=turn2+800
 if turn2>799 then turn2=turn2-800
 if turn1<0 then turn1=turn1+800
 if turn1>799 then turn1=turn1-800

 call StretchBlt,mDC,0,200,800-int(turn4),100,gDC,int(
turn4),int(sea4),800-int(turn4),100
 call StretchBlt,mDC,800-int(turn4),200,int(turn4),100,gDC,0,
int(sea4),int(turn4),100
 call StretchBlt,mDC,0,280+wave3,800-int(turn3),120,gDC,int(
turn3),int(sea3),800-int(turn3),100
 call StretchBlt,mDC,800-int(turn3),280+wave3,int(turn3),120,
gDC,0,int(sea3),int(turn3),100
 call StretchBlt,mDC,0,380+wave2,800-int(turn2),150,gDC,int(
turn2),int(sea2),800-int(turn2),100
 call StretchBlt,mDC,800-int(turn2),380+wave2,int(turn2),150,
gDC,0,int(sea2),int(turn2),100
 call StretchBlt,mDC,0,480+wave1,800-int(turn1),150,gDC,int(
turn1),int(sea1),800-int(turn1),100
 call StretchBlt,mDC,800-int(turn1),480+wave1,int(turn1),150,
gDC,0,int(sea1),int(turn1),100

 ' read the keyboard

 page 19 / 22

Liberty BASIC Programmer's Encyc

 'escape/quit
 CallDLL #user32, "GetAsyncKeyState",_VK_ESCAPE AS long,k1 AS
long
 if k1<0 then [quit]

 'left
 CallDLL #user32, "GetAsyncKeyState",_VK_LEFT AS long,k1 AS
long
 if k1<0 then [left]

 'right
 CallDLL #user32, "GetAsyncKeyState",_VK_RIGHT AS long,k1 AS
long
 if k1<0 then [right]

 'up
 CallDLL #user32, "GetAsyncKeyState",_VK_UP AS long,k1 AS long
 if k1<0 then [accelerate]

 'down
 CallDLL #user32, "GetAsyncKeyState",_VK_DOWN AS long,k1 AS
long
 if k1<0 then [brake]
 wait

 [movemouse]
 if MouseX<oldx then [left]
 if MouseX>oldx then [right]
 if MouseY<oldy then [accelerate]
 if MouseY>oldy then [brake]
 wait

 [left]
 select case turn
 case -4
 turn=-8
 case -2
 turn=-4
 case -1
 turn=-2
 case 0
 turn=-1
 case 1
 turn=0
 case 2
 turn=1

 page 20 / 22

Liberty BASIC Programmer's Encyc

 case 4
 turn=2
 case 8
 turn=4
 end select
 oldx=MouseX
 wait

 [right]
 select case turn
 case -8
 turn=-4
 case -4
 turn=-2
 case -2
 turn=-1
 case -1
 turn=0
 case 0
 turn=1
 case 1
 turn=2
 case 2
 turn=4
 case 4
 turn=8
 end select
 oldx=MouseX
 wait

 [accelerate]
 speed=min(32,speed+1)
 oldy=MouseY
 wait

 [brake]
 speed=max(1,speed-1)
 oldy=MouseY
 wait

 [quit]
 unloadbmp "ocean"
 unloadbmp "bmp"
 call ReleaseDC hwnd(#1), bDC
 call DeleteDC mDC

 page 21 / 22

Liberty BASIC Programmer's Encyc

 call DeleteDC gDC
 close #1
 close #m
 end

Where Now?

Actually the only barrier is your imagination.

Happy coding

rodbird@hotmail.com

Table of Contents
Having fun with the blitter

What is it?

Display Timing

Blitter Functionality

Blitter code

How fast is the Blitter?

Device Contexts

Basic Blitting

Double Buffering

Adding Text

Seasick?

Where Now?

Powered by TCPDF (www.tcpdf.org)

 page 22 / 22

mailto:rodbird@hotmail.com
http://www.tcpdf.org

	Fun with the blitter

