Liberty BASIC Programmer's Encyc

GPFiles - A General Purpose Interface Using the Files Command by -
BillBlack

In most programs, the LB command 'filedialog' works well to open and save files at the directory location
the user chooses. However, for some applications, it would be better to have the directory and file
structure continually displayed so the user can navigate to a location, perform the desired action and move
quickly to another location without waiting to execute 'filedialog' again. The LB command 'files' is well
suited to this type of interface between the application and the computer's directory structure.

I actually wrote two programs that utilized 'files' this way- one to search for and view text based files (bas,
txt, ini, bat, etc) or graphic files (bmp, jpeg, etc) and the other was to preview and print bas type files. It
then occurred to me that I should back up and produce a general purpose 'files' program that could be
easily expanded with a few additional controls for a specific application. This general purpose program I
called GPFiles and is the subject of this article on the LBPE.

Here are the requirements I wanted and, I think, obtained for GPFiles:

. A Windows Explorer type ability to navigate the directory structure.

. A continuous display of the current path.

. A display and count of the folders in the current path.

. A display and count of the files in the current path.

. A display of the current drives.

. An ability to update the drives if another drive is added or removed.

. A filetype mask to limit the files displayed to that type.

. A file selected box to display size, date and attributes about that file.

. A large area for future application controls.

10. Selection/navigation for listboxes would be double-click.

O 0 1 N Dt & W —

Here is a screen shot of the interface:

*. GPFiles - Bill Black CEx
Edit Help
[Progiam Files\Liberty BASIC v4 03y Fiest
Current Path
e Foiders [5 |

[GFFiles.bas
File Selected

1.3 04/19/08 03:10:08 AM a

FEytes Date)

Type [** + | Files [92

Dicel1.wav ”~
ficeFaces bas

d
D;
D;
Di
DiskBytesDemo.bas
Dowrload himl fiom given URL bas
eightball bas

enorlog

Extracticon]_ni104.bas
files_statement.bas

FontéP.cov
GPFjes bas

GPFiesScreen.pg
GraphicBaxT emplate. bas
HelpAboutdP_ni1 40 bas
HelpGPFiles bas

HiLo bss

v

GPFiles Interface Screen

Most of the program is very standard LB use of listboxes and writing to text boxes and a small help screen
is included to explain use. There are two parts that should be explained.

1. The [bUpDrvClIk] branch updates the Drives array drvs$. Credit for this goes to Alyce Watson who
covered it nicely in newsletter 142 in the article "API Corner - Drive Strings." It involves the use of a dll in
kernel32 named 'GetLogicalDriveStringsA." She covers this very well in that article so check there for
more information. Anyway, it retrieves a current list of drives installed on the computer so it will add or

page 1/ 13

https://www.wikispaces.com/user/view/BillBlack
https://www.wikispaces.com/user/view/BillBlack

Liberty BASIC Programmer's Encyc

delete drives, like a camera or a USB thumbdrive, which has been plugged in or removed while the
program is running.

2. The [getDirsFiles] subroutine is at the heart of this program and utilizes the 'files' command to retrieve
all of the folders (subdirectories) and files in the selected path. This command is covered well in the LB
help files. The only setup needed to use 'files' is to declare a two dimensional string array. This array is
passed to the 'files' function and is redimensioned upon return to the program and contains all the file and
folder information in the path requested. Here is a table showing how the info is returned in the array:

column 0 column 1 column 2 column 3
row 0 #files(f) #dirs(d)
row 1 fnam.1 fsiz.1 fdat.1 fatt.1
row2 fnam.2 fsiz.2 fdat.2 fatt.2
TOW ..
row n=#f fnam.n fsiz.n fdat.n fatt.n
row n+1=#f+1 dnam.1
row n+2 dnam.2
TOW ..
row m=#{+#d dnam.m

I did learn something about 'files' that isn't shown in the help file or mentioned elsewhere that I could find.
If arrayNames() is the array passed, then, on return, arrayNames(i+1,0) contains a filename,
arrayNames(i+1,1) contains a filesize, arrayNames(i+1,2) contains a file date and, surprise,
arrayNames(i+1,3) contains the attributes of the file such as 'a' for archive, 't' for read only, etc.

Here is a brief review of how [getDirsFiles] works:

[getDirsFil es]

' Code added for nultiple file types

t msk$=nask$

if we(mask$,";") > 1 then mask$="*.*"
"end added code

di m arrayNane$(10, 10)

files curDir$, mask$, arrayNanme$()

page 2/ 13

Liberty BASIC Programmer's Encyc

After writing this program, I discovered that the files command would not use multiple file types in the
mask unlike filedialog. The first two code lines test for this by counting the words in the mask with the wc
function and, if there are more than one, it sets the mask equal to *.* for all files. The files command is
called with the current directory, mask and array for results.

gt yFil es = val (arrayNanme$(0, 0))

gtySubDirs = val (arrayNanme$(0, 1))

if qtyFiles=0 then files$(0)="": goto [subdir]
if qtyFiles < fMax-1 then

for i=0 to qtyFiles-1

files$(i) = arrayNanme$(i +1, 0)

fsize$(i) = arrayName$(i +1, 1)

fdate$(i) = arrayNanme$(i +1, 2)
fattr$(i) = arrayName$(i +1, 3)

next

el se

t$="Too Many Files: "+str$(qtyFiles)
notice t$

gt yFi | es=f Max- 1
goto [subdirl]
end if

Next, the quantity of files and subdirectories is retrieved. If the quantity of files is zero, then the first entry
in the files$ area is set to null and we skip on to check the subdirectory entry. Otherwise all of the info for
the file entries is copied into the files$, fsize$, fdate$ and fattr$ arrays. If the number of files is greater
than fMax-1 (fmax is currently set at 2500 but can be easily increased) then a notice is displayed, the
quantity of files is reset to fMax-1 and we skip past the nulling routine as it is not needed then.

[subdir]

for i=qtyFiles to fMax-1 "null remaining files
files$(i)=""

fsize$(i) =""

fdate$(i) = ""

fattr$(i) "

next

This section merely nulls out any remaining items in the files arrays so previous larger entries won't show
in the listbox.

page 3/ 13

Liberty BASIC Programmer's Encyc

[subdir1]

folds$(0) = ".."

if gtySubDirs=0 then [subdir?2]

if gtySubDirs < fMax-1 then

for i=qtyFiles+l to qtyFiles + qtySubDirs
folds$(i-qtyFiles) = arrayName$(i, 1)

next

el se

t$="Too Many Directorys: "+str$(qtySubDirs)
notice t$

gt ySubDi r s=f Max- 1

end if

[subdi r 2]

for i=qtySubDirs+1 to fMax-1

folds$(i) =""

next

This subdirectory portion essentially follows the pattern of the files section. However, the first entry is set
to ".." to use later to navigate up the path. (Old users, like me, of MSDOS will recognize this from such
commands as 'cd .." meaning move up the path one level.) As before, tests are made for no entries and
more entries than fMax-1 and appropriate action is taken. And again, the remaining entries in the fold$

array are nulled.

' Code added for nultiple file types
if we(tmask$,";") = 1 then [ski pAdded]
nfiles=0

mask$=t nask$

for i=0 to qtyFiles-1

ad$=l ower $(re2$(files$(i),"."))

for j=1 to we(tmask$,";")

b$=r e2$(wor d$(masks$,j,";"),".")

if a%$=b$ then
files$(nfiles)=files$(i)
fsize$(nfiles) fsize$(i)

f dat e$(nfiles) fdat e$(i)
fattr$(nfiles) fattr$(i)
nfiles=nfiles+l

end if

next

next

for i=nfiles to fMax-1 "null remaining files
files$(i)=""

fsize$(i) =""

fdate$(i) = ""

fattr$(i) "

page 4/ 13

Liberty BASIC Programmer's Encyc

next

gtyFil es=nfil es
[ski pAdded]
"end added code
return

The last section is again for the added code to handle masks with more that one filetype. Since our first
test for multiple filetypes changed the mask to all types, we loop thru the file arrays for names, size, date
and attributes, checking for the filetypes in the mask. If it is a match, then we copy the desired data and
increment the matched counter nfiles. If it doesn't match, then we skip the copy portion and don't
increment the counter. All of this simply repacks the data for the desired file types into the same arrays
and we finish by nulling out the rest of the arrays. Finally, the subroutine returns to the place in the
program that called it.

A note on execution speed:

I was initially concerned that displaying all of these file and folders would be unacceptably slow but that is
not the case. For example, the largest file list on my computer (Dell Inspiron, 1.4 gHz, Intel Celeron and
Windows XP Home Ed SP2) is over 2400 files in C:\WINDOWS\SYSTEM32\. This update and display
takes much less than a second to accomplish. Most smaller directory and file structures of a few hundred
display immediately after double clicking the folder desired or the UP button. If you find you have longer
structures, just change the fMax variable. Also, if you want different filetype masks, just change the data
statements near the end of the program and adjust the size of the msk$() array if needed.

Finally, I hope to submit a followup article for an application which I have written using GPFiles to
respond to a challenge issued by Alyce Watson in newsletter 104 regarding icons. Here is her remark:
"To simplify our demo, we are passing an index of O to extract the first icon in the disk file. We could
instead, use an index of -1 to obtain the number of icons in the file, then allow the user to choose the
desired icon in a preview window. Perhaps some intrepid soul will modify the demo to do just that, and
share it with the group?"

BillBlack - (intrepid soul in training)
Liberty Basic User Group Name: BillBlack

Here is the entire program:

"Formcreated with the help of Freeform 3 v03-27-03

nomai Nw n

W ndowW dth = 700

W ndowHei ght = 505

Upper Lef t X=i nt ((Di spl ayW dt h- W ndowW dt h) / 2)
Upper Left Y=i nt ((Di spl ayHei ght - W ndowHei ght)/ 2)

page 5/ 13

https://www.wikispaces.com/user/view/BillBlack
https://www.wikispaces.com/user/view/BillBlack

Liberty BASIC Programmer's Encyc

f Max=2500 "File quan. limt
dimfiles$(fMax) 'Current file nanes
dimfsize$(fMax) 'Current file sizes
dimfdate$(fMax) 'Current file dates
dimfattr$(fMax) 'Current file attributes
dim fol ds$(fMax) 'Current fol ders

di m drvs$(25) "Current drives

di m nsk$(25) "File type array

cur Pat h$="" "Current Path eg. C\dirl\dir2\file.ext
curFil eg="" "Current File eg. file.ext

curbDi r$="" "Current Directory eg. C\dirl\dir2\
fol dSel $="" "Currently sel ected fol der

fileSel $="" "Currently selected file

drvSel $="" "Currently selected drive

gt yFi | es=0 "file count in last FILES function

gt ySubDi r s=0 "sub-directory ount in |last FILES function
index =0 "x***xx*% | oad drives array

gosub [l oadhel p] 'Set up sinple help array

index =0 "x***xx*% | oad drives array

whil e word$(Drives$, index + 1) <> ""
drvs$(i ndex) = upper$(word$(Drives$, index + 1))

index = index + 1
wend
gosub [get nsk]
mask$ = nmsk$(0) 'file selection mask
curPath$ = Defaul tDir$+"\"+"text.txt" ' ***** |oad current dir and
e

cur Fi | e$= wor d$(cur Pat h$, wor dcount (cur Pat h$, "\ "), "\")
curDir$ = word$(curPath$, 1, curFile$)
gosub [getDirsFil es] "load current subdir's and files

e - - Begin GU objects code

i stbox #1.drvs, drvs$(, [drvsdick], 5, 52, 50, 100
i stbox #1.folds, folds$(, [foldsCick], 60, 57, 180, 125
listbox #1.files, files$(, [filesdick], 5, 212, 235, 240

t ext box #1.tbCurPath, 135, 2, 555, 25

textbox #l1.tbCurFile, 250, 52, 255, 25

button #1. bUpDrv, "Updat e", [bUpDrvC k], UL, 5, 157, 50, 25
statictext #1.st16, "Current Path", 365, 32, 72, 20
statictext #1.stl1l7, "Drives", 5 32, 40, 20

statictext #1.st18, "Folders", 130, 37, 55, 20

statictext #1.st19, "Files", 165, 192, 30, 15

statictext #1.st21, "File Sel ected", 255, 77, 80, 18

t ext box #1.tbFolds, 185, 37, 45, 20

textbox #1.tbFiles, 195, 187, 45, 20

conmbobox #1.cbMsk, nsk$(, [cbMskDoubl ed i ck], 35, 187, 125, 100

page 6/ 13

Liberty BASIC Programmer's Encyc

statictext #1.st33, "Type", 0, 192, 30, 20
textbox #1.tbCurSiz, 250, 97, 65, 25
text box #1.tbCurDat, 320, 97, 135, 25
textbox #1.tbCurAtt, 460, 97, 45, 25
statictext #1.st34, "KBytes", 255, 122, 50,
statictext #1.st35, "Date", 345, 122, 40, 20
statictext #1.st36, "Attrib", 465, 122, 40,
button #1.bUp,"UP ",[bUpdick], UL, 80, 2,
button #1.bUp, "EXIT", [bnpExitdick], UL, 5,
menu #1, "Edit"
menu #1, "Hel p", _

"Help" , [help], _

"About ", [about]
open "GPFiles - Bill Black" for wi ndow as #1
print #1, "trapclose [quit.1]"
print #1, "font ns_sans_serif 6"
#1. cbMsk, "sel ectindex 1"

[UpDat eCur Pat h]
#1.tbCurPath, curDir$
#1.tbFol ds, str$(qtySubbirs)
#1.tbFiles, str$(qtyFiles)
wai t

[hel p]
ol dx=Upper Lef t X

ol dy=Upper LeftyY

ol dww=W ndowWw dt h

ol dwh=W ndowHei ght

Upper Left X = 32

Upper LeftY = 52

W ndowW dth = 700

W ndowHei ght = 500
open "Hel p" for text as #2
#2, "!trapcl ose [quithelp]"

#2, hel p$
wai t
[qui t hel p]

Upper Left X = ol dx
Upper LeftY = ol dy
W ndowW dt h = ol dww
W ndowHei ght = ol dwh

cl ose #2
wai t

25
50,

25

page 7/ 13

Liberty BASIC Programmer's Encyc

[about]
" Thanks to Al yce Watson
szApp$="GPFiles # GPFiles - A General Purpose Files tenplate!"
cr$ = chr$(13) 'carriage return
szOQherStuff$ = cr$ + "Created by Bill Black" + cr$
hl con=0
hWwid=0

calldl'l #shell 32, "Shell About A", _
hwhd as ul ong, _
szApp$ as ptr, _
szO herStuff$ as ptr, _
hl con as ul ong, _
ret as |ong
wai t

[drvsdi ck] ' change drive
#1.drvs, "selection? drvSel $"
if drvSel $="" then notice "select a drive": goto [enddrvsd i ck]
mask$=nsk$(0)
#1. cbMsk, "sel ectindex 1"
curDir$=drvSel $ + "\"
gosub [getDirsFil es]
gosub [updat eAl |]

[enddrvsd i ck]

wai t
[fol dsd i ck] "update directories
#1.fol ds, "selection? fol dSel $"
if foldSel$ = ".." then
goto [bUpd i ck]
el se
" mask$=nmsk$(0) "uncomment line to restore auto re
vert to *.* filetype
"#1.cbMsk, "selectindex 1" ‘'wuncomment line to restore auto re

vert to *.* filetype
cur Di r $=cur Di r $+f ol dSel $+"\"
gosub [getDi rsFil es]
gosub [updat eAl |]
end if
[endf ol dsC i ck] wait

[bUpdl i ck] "Move up path
n=wor dcount (curDir$, "\ ")
if n=1 then [skip]

page 8/ 13

Liberty BASIC Programmer's Encyc

" mask$=nmsk$(0) ' uncoment
vert to *.* filetype

"#1. cbMsk, "selectindex 1" " unconmment
vert to *.* filetype

t$=""

for i=1 to n-1
t$=t $+word$(curDir$,i,"\")+"\"
next
curDir$=t$
[skip]
gosub [getDi rsFil es]
gosub [updat eAl |]
wai t

[filesdick] "Select file with double click
#1.files, "selection? fil eSel $"
#1.files, "selectionindex? ix"
#1.tbCurFile, fileSel$

line to restore auto re

line to restore auto re

#1.tbCurSiz, str$(int(val (fsize$(ix-1))/100 + .5)/10)

#1.tbCur Dat, fdate$(ix-1)
#1.tbCurAtt, fattr$(ix-1)

wai t
[bUpDr vd K] "Update drives in case another inserted/renoved
for i=0 to 24: drvs$(i)="": next
dS$ = space$(2)
LB = | en(dS$)
cal I dl'l #kernel 32, "GetLogical DriveStringsA", _
LB as ul ong, _ "l ength of buffer
dS$ as ptr, _ "buf fer

nByte as ulong 'size of buffer needed
dS$ = space$(nByte+l) 'resize buffer

LB = | en(dS$)

cal I dl'l #kernel 32, "GetLogical DriveStringsA", 'call again
LB as ul ong, _ "l ength of buffer

dS$ as ptr, _ "buf fer

nByte as ulong 'length of string returned

i ndex=0 'rel oad drvs$

whil e word$(dS$, index + 1) <> ""
drvs$(index) = left$(upper$(word$(dSs$,
index = index + 1

wend

#1.drvs, "rel oad"

wai t

[cbMskDoubl ed i ck] ‘change fil etype mask

index + 1)), 2)

page 9/ 13

Liberty BASIC Programmer's Encyc

"Insert your own code here
#1. cbMsk, "contents? nask$"
gosub [getDi rsFil es]
#1.folds, "rel oad"
#1.files, "rel oad"
#1.tbCurPath, curDir$
#1.tbFol ds, str$(qtySubbirs)
#1.tbFiles, str$(qtyFiles)
fileSel $=""
#1.tbCurFile,fil eSel $

wai t

[bmpEXxi t A i ck]
[quit. 1]
cl ose #1
end

"Functions and Subroutines
function wordcount (cnt$, deliniter$)
cnt =0
work$ = ""
while | en(work$) < len(cnt$)
cnt =cnt + 1
work$ = work$ + word$(cnt$,cnt,delimter$) + delimter$
wend
wor dcount = cnt
end function

[getDirsFil es]
' Code added for nultiple file types
t msk$=nask$
if we(mask$,";") > 1 then nmask$="*. *"
'end added code
di m arrayNanme$(10, 10)
files curDir$, mask$, arrayNanme$()
gt yFil es = val (arrayNanme$(0, 0))
gtySubDirs = val (arrayNanme$(0, 1))
if qtyFiles=0 then files$(0)="": goto [subdir]
if qtyFiles < fMax-1 then
for i=0 to qtyFiles-1

files$(i) = arrayNanme$(i +1, 0)

fsize$(i) = arrayName$(i +1, 1)

fdate$(i) = arrayNanme$(i +1, 2)

fattr$(i) = arrayName$(i +1, 3)
next

el se

page 10/ 13

Liberty BASIC Programmer's Encyc

t$="Too Many Files: "+str$(qgtyFiles)
notice t$
gt yFi | es=f Max- 1
goto [subdirl]
end if
[subdir]
for i=qtyFiles to fMax-1 'null remaining files
files$(i)=""
fsize$(i) "
fdate$(i)
fattr$(i)
next
[subdir1]
fol ds$(0) ="
if gtySubDirs=0 then [subdir?2]
if gtySubDirs < fMax-1 then
for i=qtyFiles+l to qtyFiles + qtySubDirs
folds$(i-qtyFiles) = arrayName$(i, 1)

next

el se
t$="Too Many Directorys: "+str$(qtySubDirs)
notice t$
gt ySubDi r s=f Max- 1

end if

[subdi r 2]

for i=qtySubDirs+1 to fMax-1

folds$(i) =""

next

' Code added for nultiple file types
if we(tmask$,";") = 1 then [ski pAdded]
nfiles=0
mask$=t mask$
for i=0 to qtyFiles-1
a$=l ower $(re2(filesH(i),"."))
for j=1 to we(tmask$,";")
b$=re2$(wor d$(masks,j,";"),".")
if a$=b$ then
files$(nfiles)=files$(i)

fsize$(nfiles) = fsize$(i)
fdate$(nfiles) = fdate$(i)
fattr$(nfiles) = fattr$(i)

nfiles=nfil es+1
end if
next
next

page 11/13

Liberty BASIC Programmer's Encyc

for i=nfiles to fMax-1 "null remaining files
files$(i)=""
fsize$(i) "
fdate$(i)
fattr$(i)

next

gtyFil es=nfil es

[ski pAdded]
'"end added code
return

[get nsk]

data "*.*" "* jco;*.exe;*.dll;*. icl","*. txt","*.ini","*. bas"
data "*.bmp","*. htnt","* doc","*.ffa"

data "*.jpg","*.pdf","*. exe","*.dlI","*.ico","*.icl","end"

t$="":i=0

while t$ <> "end"
read t$
mek$(i)=t$
i=i+1

wend

i=i-1: nmek$(i)=""

return

[updat eAl |]
#1.folds, "rel oad"
#1.files, "rel oad"
#1.tbCurPath, curDir$
#1.tbFol ds, str$(qtySubbirs)
#1.tbFiles, str$(qtyFiles)
fileSel $=""
#1.tbCurFile,fil eSel $
return

function we(st$, nsk$)

t$="x": i=0
while t$ <> ""
i=i+1
t $=wor d$(st $, i, nsk$)
wend
we=i -1

end function

function re2$(st$, nsk$)

page 12/13

Liberty BASIC Programmer's Encyc

re2$=wor d$(st$, 2, nrsk$)
end function

[I oadhel p]

cr$=chr $(13)

hel p$=" "+cr$

hel p$=hel p$+cr $

hel p$=hel p$+" Hel p for GPFiles"+cr$

hel p$=hel p$+cr $

hel p$=hel p$+" GPFiles is intended as a General Purpose Files and
Directory"+cr$

hel p$=hel p$+" interface for other applications and works much lik
e Wndows"+cr$

hel p$=hel p$+" Explorer."+cr$

hel p$=hel p$+cr $

hel p$=hel p$+" -The current directory path is always displayed at
the top and the"+cr$

hel p$=hel p$+" names and quantity of folders and files are disp
ayed for that path."+cr$

hel p$=hel p$+" -Navigate up the directory path by clicking the UP
button or double-"+cr$

hel p$=hel p$+" clicking the double dot (..) entry listed at the
top of folders."+cr$

hel p$=hel p$+" -Navi gate down the directory path by doubl e-
clicking on one of the"+cr$

hel p$=hel p$+" directory nanes in the folders list."+cr$

hel p$=hel p$+" -Select a file by double-
clicking on one of the nanes in the files list."+cr$

hel p$=hel p$+" The file nane, size, date and attributes will be
di spl ayed. "+cr$

hel p$=hel p$+" -Select a drive by doubl e-
clicking on one of the drive letters."+cr$

hel p$=hel p$+" If you click on the Update button under the drive
list, it will"+cr$

hel p$=hel p$+" update the drive list even if you have added or r
enoved a drive"+cr$

hel p$=hel p$+" while the programis running."+cr$

hel p$=hel p$+" -The enpty area of the window is intended for contr
ols for applications"+cr$

hel p$=hel p$+" such as a file or graphics viewer or icon preview
er/saver."
return

page 13/13

http://www.tcpdf.org

	GPFiles

