
Liberty BASIC Programmer's Encyc

Getting and Setting the Default Printer
-

 JanetTerra

Table of Contents
Getting and Setting the Default Printer

Liberty BASIC's Printerdialog Command

Get Default Printer

List All Printers

Set Default Printer

Getting, Listing, Setting the Default Printer (Mainwindow)

Getting, Listing, Setting the Default Printer (GUI)

Printer Dialog Clone

Liberty BASIC's Printerdialog Command

The printerdialog function brings up the standard Windows printer dialog box. From the Liberty BASIC
helpfile

PRINTERDIALOG

Description

This command opens the standard Windows Common Printer Dialog. If the user chooses a
printer and accepts, the next print job will go to this printer. Accepting a printer also sets
the global variables PrinterName$, PrintCollate and PrintCopies to reflect what the user
chose for the Printer Name, Collate and Copies. If no printer is accepted, then
PrinterName$ is set to an empty string.

Unfortunately, Liberty BASIC doesn't interact well with Windows printer dialog. Despite what
information PrinterName$ holds, all documents, whether text (lprint, dump) or graphics (vga, svga, xga)

 page 1 / 18

https://www.wikispaces.com/user/view/JanetTerra
https://www.wikispaces.com/user/view/JanetTerra

Liberty BASIC Programmer's Encyc

will be sent to the default printer. A work-around is to set the desired printer as default before printing the
document. This work-around is based upon contributions of -

 StPendl. All of the code used in this article
has been compiled from postings made by -

 StPendl, both at Liberty BASIC Conforums and at the
Official Liberty BASIC Support Group. The compiled snippets have been modified slightly for
consistency with descriptive variable names, but otherwise remain intact.

The code in this article is only valid for Windows 2k/XP/Vista/2k3/2k8. This code will not work for
Windows 9x/ME. For code that will work with Windows 9x/ME, see Problem with printerdialog at the
Liberty BASIC Community Forum.

The first step is to identify (get) the current default printer.

Get Default Printer

The information derived from the winspool.drv DLL will be placed in a struct. The struct must first be
defined, here it's pcchBuffer, and the length of the struct element value set to _MAX_PATH. The call to
the DLL is then made and the name of the default printer is placed into pcchBuffer.value.struct. Note that
byRef is used so that the changes to currentDefaultPrinter$ are made both locally and globally. The
function itself returns a number, 0 for a failure, non-zero for success.

 GetDefaultPrinter = GetDefaultPrinter(currentDefaultPrinter$)
 if GetDefaultPrinter = 0 then
 print "Call failed"
 else
 print "DefaultPrinter = ";currentDefaultPrinter$
 end if
end

function GetDefaultPrinter(byref currentDefaultPrinter$)
' Returns zero if call fails
 struct pcchBuffer, value as ulong
 currentDefaultPrinter$ = space$(_MAX_PATH)
 pcchBuffer.value.struct = _MAX_PATH

 open "winspool.drv" for dll as #winspool

 calldll #winspool, "GetDefaultPrinterA", _
 currentDefaultPrinter$ as ptr, _
 pcchBuffer as struct, _
 GetDefaultPrinter as long

 page 2 / 18

https://www.wikispaces.com/user/view/StPendl
https://www.wikispaces.com/user/view/StPendl
https://www.wikispaces.com/user/view/StPendl
https://www.wikispaces.com/user/view/StPendl
http://libertybasic.conforums.com
http://groups.yahoo.com/group/libertybasic/
http://libertybasic.conforums.com/index.cgi?board=LB3&action=display&num=1230015904
http://libertybasic.conforums.com/

Liberty BASIC Programmer's Encyc

 close #winspool
end function

Stefan's code has always been accompanied with an error catching routine. Should the call not work,
Liberty BASIC can identify the cause of the failure.

 GetDefaultPrinter = GetDefaultPrinter(currentDefaultPrinter$)
 if GetDefaultPrinter = 0 then
 print "Call failed"
 else
 print "DefaultPrinter = ";currentDefaultPrinter$
 end if
end

function GetDefaultPrinter(byref currentDefaultPrinter$)
' Returns zero if call fails
 struct pcchBuffer, value as ulong
 currentDefaultPrinter$ = space$(_MAX_PATH)
 pcchBuffer.value.struct = _MAX_PATH

 open "winspool.drv" for dll as #winspool

 calldll #winspool, "GetDefaultPrinterA", _
 currentDefaultPrinter$ as ptr, _
 pcchBuffer as struct, _
 GetDefaultPrinter as long
 if GetDefaultPrinter = 0 then
 call DisplayError
 else
 currentDefaultPrinter$ = left$(
currentDefaultPrinter$, pcchBuffer.value.struct - 1)
 end if
 close #winspool
end function

sub DisplayError
 ErrorCode = GetLastError()

 dwFlags = _FORMAT_MESSAGE_FROM_SYSTEM
 nSize = 1024
 lpBuffer$ = space$(nSize); chr$(0)
 dwMessageID = ErrorCode

 calldll #kernel32, "FormatMessageA", _

 page 3 / 18

Liberty BASIC Programmer's Encyc

 dwFlags as ulong, _
 lpSource as ulong, _
 dwMessageID as ulong, _
 dwLanguageID as ulong, _
 lpBuffer$ as ptr, _
 nSize as ulong, _
 Arguments as ulong, _
 result as ulong

 print "Error "; ErrorCode; ": "; left$(lpBuffer$, result)
end sub

function GetLastError()
 calldll #kernel32, "GetLastError", _
 GetLastError as ulong
end function

Storing the current default printer in a variable is important to allow that printer to be reassigned as default
once the document has been printed.

List All Printers

The next step is to get a list of all available printers. This requires a little more work and three more
structs. Stefan's function loops around to obtain all the printer names, until there are no names left. The
printer names are concatenated, deliminated with a semicolon, in the string variable PrinterInfo$. The loop
ends when error #122 (The data area passed to a system call is too small) is encounered. Once again, byRef
is used so that PrinterInfo$ remains the same locally and globally.

Enumerating the printers requires allocating and searching blocks of memory, resulting in rather complex
code. Also, listing printers available to the computer by a local (physical) connection requires different
variables than listing printers available to the computer by a network or wireless connection. The
EnumPrinters() function must be accessed twice, first for local printers then for network printers. The
appropriate variables should be passed to the function each time.

Flag to List Local Printers
PRINTER.ENUM.LOCAL = hexdec("2")

Flag to List Network Printers
PRINTER.ENUM.CONNECTIONS = hexdec("4")

The first pass stores the retrieved information in LocalPrinterInfo$ and the second pass stores the retrieved
information in NetworkPrinterInfo$. These two stringes are then concatenated with a semicolon to hold all

 page 4 / 18

Liberty BASIC Programmer's Encyc

printers in PrinterInfo$. Finally, an array is constructed to hold the individual printer names.

' Count and enumerate all printers
' Need to access function twice, first for local printers, second for
network printers
 PRINTER.ENUM.LOCAL = hexdec("2")
 PRINTER.ENUM.CONNECTIONS = hexdec("4")

 nLocalPrinters = EnumPrinters(PrinterInfo$, PRINTER.ENUM.LOCAL)
print "nLocalPrinters = ";nLocalPrinters
 LocalPrinterInfo$ = PrinterInfo$
print "LocalPrinterInfo$ = ";LocalPrinterInfo$
print
 nNetworkPrinters = EnumPrinters(
PrinterInfo$, PRINTER.ENUM.CONNECTIONS)
print "nNetworkPrinters = ";nNetworkPrinters
 NetworkPrinterInfo$ = PrinterInfo$
print "NetworkPrinterInfo$ = ";NetworkPrinterInfo$
print

' Add both to total and combine the 2 printer strings
 nPrinters = nLocalPrinters + nNetworkPrinters
Print "nPrinters = ";nPrinters
 PrinterInfo$ = LocalPrinterInfo$;";";NetworkPrinterInfo$
print "PrinterInfo$ = ";PrinterInfo$

' Place all printers in an array
 dim availablePrinters$(nPrinters)
 for i = 1 to nPrinters
 availablePrinters$(i) = word$(PrinterInfo$, i, ";")
 next i
for i = 1 to nPrinters
print i, availablePrinters$(i)
next i
end

function EnumPrinters(byref PrinterInfo$, nFlags)
' Returns the number of printers found
' Fills the submitted variable with the printer names
' Separated by semicolons (;)
 open "winspool.drv" for dll as #winspool
 struct pcbNeeded, value as ulong
 struct pcReturned, value as ulong
 struct PrinterInfo4, _

 page 5 / 18

Liberty BASIC Programmer's Encyc

 pPrinterName$ as ptr, _
 pServerName$ as ptr, _
 Attributes as ulong
 PrinterInfo4Len = len(PrinterInfo4.struct)
 Level = 4
 cbBuf = PrinterInfo4Len
 uFlags = _LMEM_MOVEABLE or _LMEM_ZEROINIT
 calldll #kernel32, "LocalAlloc", _
 uFlags as uLong, _
 cbBuf as uLong, _
 hMem as uLong
 calldll #kernel32, "LocalLock", _
 hMem as uLong, _
 pBuffer as uLong

[retryEnumPrinters]
 calldll #winspool, "EnumPrintersA", _
 nFlags as ulong, _
 PrinterName as ulong, _
 Level as ulong, _
 pBuffer as ulong, _
 cbBuf as ulong, _
 pcbNeeded as struct, _
 pcReturned as struct, _
 result as long
 if result = 0 then
 if GetLastError() = 122 then
 cbBuf = pcbNeeded.value.struct
 hOldMem = hMem
 calldll #kernel32, "LocalReAlloc", _
 hOldMem as ulong, _
 cbBuf as ulong, _
 uFlags as ulong, _
 hMem as ulong
 calldll #kernel32, "LocalLock", _
 hMem as uLong, _
 pBuffer as ulong
 goto [retryEnumPrinters]
 else
 call DisplayError
 end if
 else
 EnumPrinters = pcReturned.value.struct
 BufferPointer = pBuffer
 for count = 0 to EnumPrinters - 1
 calldll #kernel32, "RtlMoveMemory", _

 page 6 / 18

Liberty BASIC Programmer's Encyc

 PrinterInfo4 as struct, _
 BufferPointer as ulong, _
 PrinterInfo4Len as ulong, _
 result as void
 BufferPointer = BufferPointer + PrinterInfo4Len
 pointer = PrinterInfo4.pPrinterName$.struct
 PrinterInfo$ = winstring(pointer); ";"; PrinterInfo$
 next count
 PrinterInfo$ = left$(PrinterInfo$, len(PrinterInfo$)-1)
 end if
 calldll #kernel32, "LocalFree", _
 hMem as uLong, _
 result as uLong
 close #winspool
end function

function GetLastError()
 calldll #kernel32, "GetLastError", _
 GetLastError as ulong
end function

The final step is to designate a different printer as default.

Set Default Printer

The code to set a default printer is the simplest of all, just passing a valid printer name to the winspool.drv
dll. Like the GetDefaultPrinter() function, the SetDefaultPrinter() function returns a 0 for failure, a non-
zero for success.

 selectedDefaultPrinter$ = "My Inkjet Printer"
' Set new default printer
 SetDefaultPrinter = SetDefaultPrinter(selectedDefaultPrinter$)
end

function SetDefaultPrinter(selectedDefaultPrinter$)
' Returns zero if call fails
 open "winspool.drv" for dll as #winspool

 calldll #winspool, "SetDefaultPrinterA",_
 selectedDefaultPrinter$ as ptr,_
 SetDefaultPrinter as long

 page 7 / 18

Liberty BASIC Programmer's Encyc

 close #winspool
end function

This is the same code, but with Stefan's error trapping included.

 selectedDefaultPrinter$ = "My Inkjet Printer"
' Set new default printer
 SetDefaultPrinter = SetDefaultPrinter(selectedDefaultPrinter$)
end

function SetDefaultPrinter(selectedDefaultPrinter$)
' Returns zero if call fails
 open "winspool.drv" for dll as #winspool

 calldll #winspool, "SetDefaultPrinterA",_
 selectedDefaultPrinter$ as ptr,_
 SetDefaultPrinter as long

 close #winspool
 if SetDefaultPrinter = 0 then call DisplayError
end function

sub DisplayError
 ErrorCode = GetLastError()

 dwFlags = _FORMAT_MESSAGE_FROM_SYSTEM
 nSize = 1024
 lpBuffer$ = space$(nSize); chr$(0)
 dwMessageID = ErrorCode

 calldll #kernel32, "FormatMessageA", _
 dwFlags as ulong, _
 lpSource as ulong, _
 dwMessageID as ulong, _
 dwLanguageID as ulong, _
 lpBuffer$ as ptr, _
 nSize as ulong, _
 Arguments as ulong, _
 result as ulong

 print "Error "; ErrorCode; ": "; left$(lpBuffer$, result)
end sub

function GetLastError()

 page 8 / 18

Liberty BASIC Programmer's Encyc

 calldll #kernel32, "GetLastError", _
 GetLastError as ulong
end function

Getting, Listing, Setting the Default Printer (Mainwindow)

Using all three components, the programmer now has full control of getting, listing, and setting the default
printer.

' Get the original default printer
 GetDefaultPrinter = GetDefaultPrinter(origDefaultPrinter$)
print "origDefaultPrinter$ = ";origDefaultPrinter$
print

' Count and enumerate all printers
' Need to access function twice, first for local printers, second for
network printers
 PRINTER.ENUM.LOCAL = hexdec("2")
 PRINTER.ENUM.CONNECTIONS = hexdec("4")

 nLocalPrinters = EnumPrinters(PrinterInfo$, PRINTER.ENUM.LOCAL)
print "nLocalPrinters = ";nLocalPrinters
 LocalPrinterInfo$ = PrinterInfo$
print "LocalPrinterInfo$ = ";LocalPrinterInfo$
print
 nNetworkPrinters = EnumPrinters(
PrinterInfo$, PRINTER.ENUM.CONNECTIONS)
print "nNetworkPrinters = ";nNetworkPrinters
 NetworkPrinterInfo$ = PrinterInfo$
print "NetworkPrinterInfo$ = ";NetworkPrinterInfo$
print

' Add both to total and combine the 2 printer strings
 nPrinters = nLocalPrinters + nNetworkPrinters
Print "nPrinters = ";nPrinters
 PrinterInfo$ = LocalPrinterInfo$;";";NetworkPrinterInfo$
print "PrinterInfo$ = ";PrinterInfo$

' Place all printers in an array
 dim availablePrinters$(nPrinters)
 for i = 1 to nPrinters
 availablePrinters$(i) = word$(PrinterInfo$, i, ";")
 next i
for i = 1 to nPrinters

 page 9 / 18

Liberty BASIC Programmer's Encyc

print i, availablePrinters$(i)
next i
print

' Select another default printer
 Input "Printer to set as default > ";selectedDefaultPrinter
selectedDefaultPrinter$ = availablePrinters$(selectedDefaultPrinter)
print

' Set new default printer
 SetDefaultPrinter = SetDefaultPrinter(selectedDefaultPrinter$)
end

function EnumPrinters(byref PrinterInfo$, nFlags)
' Returns the number of printers found
' Fills the submitted variable with the printer names
' Separated by semicolons (;)
 open "winspool.drv" for dll as #winspool
 struct pcbNeeded, value as ulong
 struct pcReturned, value as ulong
 struct PrinterInfo4, _
 pPrinterName$ as ptr, _
 pServerName$ as ptr, _
 Attributes as ulong
 PrinterInfo4Len = len(PrinterInfo4.struct)
 Level = 4
 cbBuf = PrinterInfo4Len
 uFlags = _LMEM_MOVEABLE or _LMEM_ZEROINIT
 calldll #kernel32, "LocalAlloc", _
 uFlags as uLong, _
 cbBuf as uLong, _
 hMem as uLong
 calldll #kernel32, "LocalLock", _
 hMem as uLong, _
 pBuffer as uLong

[retryEnumPrinters]
 calldll #winspool, "EnumPrintersA", _
 nFlags as ulong, _
 PrinterName as ulong, _
 Level as ulong, _
 pBuffer as ulong, _
 cbBuf as ulong, _
 pcbNeeded as struct, _
 pcReturned as struct, _

 page 10 / 18

Liberty BASIC Programmer's Encyc

 result as long
 if result = 0 then
 if GetLastError() = 122 then
 cbBuf = pcbNeeded.value.struct
 hOldMem = hMem
 calldll #kernel32, "LocalReAlloc", _
 hOldMem as ulong, _
 cbBuf as ulong, _
 uFlags as ulong, _
 hMem as ulong
 calldll #kernel32, "LocalLock", _
 hMem as uLong, _
 pBuffer as ulong
 goto [retryEnumPrinters]
 else
 call DisplayError
 end if
 else
 EnumPrinters = pcReturned.value.struct
 BufferPointer = pBuffer
 for count = 0 to EnumPrinters - 1
 calldll #kernel32, "RtlMoveMemory", _
 PrinterInfo4 as struct, _
 BufferPointer as ulong, _
 PrinterInfo4Len as ulong, _
 result as void
 BufferPointer = BufferPointer + PrinterInfo4Len
 pointer = PrinterInfo4.pPrinterName$.struct
 PrinterInfo$ = winstring(pointer); ";"; PrinterInfo$
 next count
 PrinterInfo$ = left$(PrinterInfo$, len(PrinterInfo$)-1)
 end if
 calldll #kernel32, "LocalFree", _
 hMem as uLong, _
 result as uLong
 close #winspool
end function

function GetDefaultPrinter(byref currentDefaultPrinter$)
' Returns zero if call fails

 struct pcchBuffer, value as ulong
 currentDefaultPrinter$ = space$(_MAX_PATH)
 pcchBuffer.value.struct = _MAX_PATH

 page 11 / 18

Liberty BASIC Programmer's Encyc

 open "winspool.drv" for dll as #winspool

 calldll #winspool, "GetDefaultPrinterA", _
 currentDefaultPrinter$ as ptr, _
 pcchBuffer as struct, _
 GetDefaultPrinter as long

 close #winspool

 if GetDefaultPrinter = 0 then
 call DisplayError
 else
 currentDefaultPrinter$ = left$(
currentDefaultPrinter$, pcchBuffer.value.struct - 1)
 end if
end function

function SetDefaultPrinter(selectedDefaultPrinter$)
' Returns zero if call fails
 open "winspool.drv" for dll as #winspool

 calldll #winspool, "SetDefaultPrinterA",_
 selectedDefaultPrinter$ as ptr,_
 SetDefaultPrinter as long

 close #winspool
 if SetDefaultPrinter = 0 then call DisplayError
end function

sub DisplayError
 ErrorCode = GetLastError()

 dwFlags = _FORMAT_MESSAGE_FROM_SYSTEM
 nSize = 1024
 lpBuffer$ = space$(nSize); chr$(0)
 dwMessageID = ErrorCode

 calldll #kernel32, "FormatMessageA", _
 dwFlags as ulong, _
 lpSource as ulong, _
 dwMessageID as ulong, _
 dwLanguageID as ulong, _
 lpBuffer$ as ptr, _
 nSize as ulong, _
 Arguments as ulong, _
 result as ulong

 page 12 / 18

Liberty BASIC Programmer's Encyc

 print "Error "; ErrorCode; ": "; left$(lpBuffer$, result)
end sub

function GetLastError()
 calldll #kernel32, "GetLastError", _
 GetLastError as ulong
end function

Getting, Listing, Setting the Default Printer (GUI)

A demo using a dialog window to select the user's choice of printer. The program returns the original
default printer as default after each print.

' Get the original default printer
 GetDefaultPrinter = GetDefaultPrinter(origDefaultPrinter$)
 origDefaultPrinter$ = origDefaultPrinter$
 defaultPrinter$ = origDefaultPrinter$

' Count and enumerate all printers
' Need to access function twice, first for local printers, second for
network printers
 PRINTER.ENUM.LOCAL = hexdec("2")
 PRINTER.ENUM.CONNECTIONS = hexdec("4")

 nLocalPrinters = EnumPrinters(PrinterInfo$, PRINTER.ENUM.LOCAL)
 LocalPrinterInfo$ = PrinterInfo$
 nNetworkPrinters = EnumPrinters(
PrinterInfo$, PRINTER.ENUM.CONNECTIONS)
 NetworkPrinterInfo$ = PrinterInfo$

' Add both to total and combine the 2 printer strings
 nPrinters = nLocalPrinters + nNetworkPrinters
 PrinterInfo$ = LocalPrinterInfo$;";";NetworkPrinterInfo$

' Place all printers in an array
 dim availablePrinters$(nPrinters)
 for i = 1 to nPrinters
 availablePrinters$(i) = word$(PrinterInfo$, i, ";")
 next i

 WindowWidth = 809
 WindowHeight = 600
 UpperLeftX = Int((DisplayWidth - WindowWidth) / 2)

 page 13 / 18

Liberty BASIC Programmer's Encyc

 UpperLeftY = Int((DisplayHeight - WindowHeight) / 2)
 menu #main, "&File", "&Print",[printerSelection], |,"E&xit", [
quit]
 Graphicbox #main.g, 1, 0, 800, 550
 open "Printer Selection" for Window as #main
 #main "trapclose [quit]"
 call screenDisplay

wait

[quit]
 close #main
end

[printerSelection]
 WindowWidth = 250
 WindowHeight = 150
 UpperLeftX = 8
 UpperLeftY = 8
 listbox #dlg.sel, availablePrinters$(), [printScreen], 14, 20,
214, 54
 button #dlg.prnt, "Print", [printScreen], UL, 14, 84, 70, 28
 button #dlg.cncl, "Cancel", [closeDlg], UL, 160, 84, 70, 28
 stylebits #dlg, _WS_POPUP or _WS_THICKFRAME, _WS_CAPTION, 0, 0
 open "Select Printer" for dialog_modal as #dlg
 #dlg "trapclose [closeDlg]"
 #dlg.sel "select ";defaultPrinter$
wait

[printScreen]
 #dlg.sel "selection? selPrinter$"
 defaultPrinter$ = selPrinter$
' Set the default printer as the selected printer
 SetDefaultPrinter = SetDefaultPrinter(selPrinter$)
 #main.g "print svga"
' Return the default printer to the original default printer
 SetDefaultPrinter = SetDefaultPrinter(origDefaultPrinter$)

[closeDlg]
 close #dlg
wait

sub screenDisplay
 #main.g "down; font verdana 14 bold; place 300 200"
 #main.g, "\Hello World"
 #main.g, "flush"

 page 14 / 18

Liberty BASIC Programmer's Encyc

end sub

function EnumPrinters(byref PrinterInfo$, nFlags)
' Returns the number of printers found
' Fills the submitted variable with the printer names
' Separated by semicolons (;)
 open "winspool.drv" for dll as #winspool
 struct pcbNeeded, value as ulong
 struct pcReturned, value as ulong
 struct PrinterInfo4, _
 pPrinterName$ as ptr, _
 pServerName$ as ptr, _
 Attributes as ulong
 PrinterInfo4Len = len(PrinterInfo4.struct)
 Level = 4
 cbBuf = PrinterInfo4Len
 uFlags = _LMEM_MOVEABLE or _LMEM_ZEROINIT
 calldll #kernel32, "LocalAlloc", _
 uFlags as uLong, _
 cbBuf as uLong, _
 hMem as uLong
 calldll #kernel32, "LocalLock", _
 hMem as uLong, _
 pBuffer as uLong

[retryEnumPrinters]
 calldll #winspool, "EnumPrintersA", _
 nFlags as ulong, _
 PrinterName as ulong, _
 Level as ulong, _
 pBuffer as ulong, _
 cbBuf as ulong, _
 pcbNeeded as struct, _
 pcReturned as struct, _
 result as long
 if result = 0 then
 if GetLastError() = 122 then
 cbBuf = pcbNeeded.value.struct
 hOldMem = hMem
 calldll #kernel32, "LocalReAlloc", _
 hOldMem as ulong, _
 cbBuf as ulong, _
 uFlags as ulong, _
 hMem as ulong
 calldll #kernel32, "LocalLock", _
 hMem as uLong, _

 page 15 / 18

Liberty BASIC Programmer's Encyc

 pBuffer as ulong
 goto [retryEnumPrinters]
 else
 call DisplayError
 end if
 else
 EnumPrinters = pcReturned.value.struct
 BufferPointer = pBuffer
 for count = 0 to EnumPrinters - 1
 calldll #kernel32, "RtlMoveMemory", _
 PrinterInfo4 as struct, _
 BufferPointer as ulong, _
 PrinterInfo4Len as ulong, _
 result as void
 BufferPointer = BufferPointer + PrinterInfo4Len
 pointer = PrinterInfo4.pPrinterName$.struct
 PrinterInfo$ = winstring(pointer); ";"; PrinterInfo$
 next count
 PrinterInfo$ = left$(PrinterInfo$, len(PrinterInfo$)-1)
 end if
 calldll #kernel32, "LocalFree", _
 hMem as uLong, _
 result as uLong
 close #winspool
end function

function GetDefaultPrinter(byref currentDefaultPrinter$)
' Returns zero if call fails

 struct pcchBuffer, value as ulong
 currentDefaultPrinter$ = space$(_MAX_PATH)
 pcchBuffer.value.struct = _MAX_PATH

 open "winspool.drv" for dll as #winspool

 calldll #winspool, "GetDefaultPrinterA", _
 currentDefaultPrinter$ as ptr, _
 pcchBuffer as struct, _
 GetDefaultPrinter as long

 close #winspool

 if GetDefaultPrinter = 0 then
 call DisplayError
 else

 page 16 / 18

Liberty BASIC Programmer's Encyc

 currentDefaultPrinter$ = left$(
currentDefaultPrinter$, pcchBuffer.value.struct - 1)
 end if
end function

function SetDefaultPrinter(selectedDefaultPrinter$)
' Returns zero if call fails
 open "winspool.drv" for dll as #winspool

 calldll #winspool, "SetDefaultPrinterA",_
 selectedDefaultPrinter$ as ptr,_
 SetDefaultPrinter as long

 close #winspool
 if SetDefaultPrinter = 0 then call DisplayError
end function

sub DisplayError
 ErrorCode = GetLastError()

 dwFlags = _FORMAT_MESSAGE_FROM_SYSTEM
 nSize = 1024
 lpBuffer$ = space$(nSize); chr$(0)
 dwMessageID = ErrorCode

 calldll #kernel32, "FormatMessageA", _
 dwFlags as ulong, _
 lpSource as ulong, _
 dwMessageID as ulong, _
 dwLanguageID as ulong, _
 lpBuffer$ as ptr, _
 nSize as ulong, _
 Arguments as ulong, _
 result as ulong

 print "Error "; ErrorCode; ": "; left$(lpBuffer$, result)
end sub

function GetLastError()
 calldll #kernel32, "GetLastError", _
 GetLastError as ulong
end function

Printer Dialog Clone

 page 17 / 18

Liberty BASIC Programmer's Encyc

- robmcal offers code for a look alike printer dialog box.

Powered by TCPDF (www.tcpdf.org)

 page 18 / 18

https://www.wikispaces.com/user/view/robmcal
https://www.wikispaces.com/user/view/robmcal
/PrinterDialogClone
http://www.tcpdf.org

	Get Set Default Printer

