Liberty BASIC Programmer's Encyc

Getting to grips with Segments

Rod Bird

Table of Contents

Getting to grips with Segments

Intro

The drawing history past and present

Naming and numbering

Managing segments

Decouple the screen

Start with a clean sheet

Static graphics

Refreshed graphics

Animated graphics

Background and foreground graphics

Multiple segment graphics

Intro

Graphic segments perplex quite a few folks. I hope to clarify their use and help you choose the most
appropriate strategy for managing segments within your project.

You need to manage segments as they consume memory. There are two kinds of segments, flushed
segments and the current segment. Even if you don’t use the flush command to create flushed segments
you will find the current segment consumes memory as you draw.

The main purpose of a flushed segment is to preserve the drawn graphics so that they may be redrawn if
the program window is minimized or covered. If graphics have not been flushed they will be lost and you

page 1/12

Liberty BASIC Programmer's Encyc

will be looking at a blank window when it is restored.

For the more adventurous, segments also allow multiple graphic scenes to be flicked on and off screen on a
semi animated basis.

The help file is very clearly worded, once you have read this document please review the commands I list
below, you may be better able to appreciate what is being said.

The drawing history past and present

Liberty drawing commands do more than paint pixels on the screen, the drawing commands you issue are
recorded in memory. The commands are recorded sequentially and grouped together in segments. You
form a segment by issuing a #1.gb "flush" command.

You need to be aware that this recording is always on. From the moment the program starts and
immediately after a flush command, a new current segment is in play.

Flushed segments are the past, only they will be restored if the screen is minimized or covered by another
window. The current segment is the present, current segment drawing will be lost unless flushed into the
past or preserved in another way.

Naming and numbering

Segments are i1dentified by an ever increasing number. An initial current segment is established as soon as
the program starts and is numbered 1, the next established 2 and so on. Even if we delete segments the next
current segment will be numbered one higher than the last.

Liberty BASIC allows us to establish the number of the current segment and store that in an appropriate
program variable by issuing a #1.gb "segment variablename" command. Even more conveniently it allows
us to store the number directly to a system variable with a #1.gb "flush segmentname" command.
segmentname adopts the number of the segment and can be used to name the segment when you later
redraw or delete it.

A couple of things catch folk out in naming and numbering. First is that flush both saves the segment and
establishes a new segment. If you obtain the current segment number before you flush, then you will have
the number of the soon to be flushed segment. If you obtain it after the flush, you have actually obtained
the number of the new current segment. Simply deduct one in that situation if you actually wanted the
number of the last flushed segment.

Second thing is that the segmentname system variable is out of scope to the program. It can be used as a
literal name in #1.gb "redraw segmentname" and #1.gb "delsegment segmentname" commands but you
cannot use it as a program variable. If you establish a program variable of the same name it is an entirely

page 2/ 12

Liberty BASIC Programmer's Encyc

different variable.

Managing segments

Segments can be deleted with #1.gb "delsegment";n or #1.gb "delsegment segmentname", redrawn
individually with #1.gb "redraw";n or #1.gb "redraw segmentname" or all undeleted segments redrawn with
the command,#1.gb "redraw".

Redraw will paint the named segment to the front of the screen, this changes the Z order of the drawing on
screen. redraw will restore the Z order and paint undeleted segments in their original Z order.

You can erase all segments by issuing a #1.gb "cls" command. This deletes all flushed segments, the

current segment and wipes the screen. You can clear the current segment by issuing a #1.gb "discard"
command.

Decouple the screen
Only the redraw and cls command have any impact on what you see on the screen, other commands act
only on the segments held in memory. Delsegment will have no impact on the screen, discard will have no

impact on the screen but the segment targeted will be deleted. Decouple the screen and the drawing history
in your mind.

Start with a clean sheet

When you start, start with a clean sheet, discard what is in your current segment. Think what you have
flushed already . You might use cls if you wanted to start completely fresh.

)

Memory use is zero and there are no forgotten drawing commands.

'good practice to start wth a cl ean sheet
#1.gb "cl s”
‘or

page 3/ 12

Liberty BASIC Programmer's Encyc

#1.gb "discard"

Static graphics

If you are painting graphics that will not be changed, perhaps a company logo then simply draw and flush
once.

)

Memory use is managed to one segment.

"this is the static graphic exanple

nonai nw n
W ndowWN dth = 600
W ndowHei ght = 400

Upper Left X (D spl ayW dt h- W ndoww dt h) / 2

Upper LeftyY (Di spl ayHei ght - W ndowHei ght)/ 2

gr aphi cbox #1.gb, 50, 25, 500, 300

open "Static G aphic Exanple" for wi ndow nf as #1
#1 "trapclose [quit]"

"put the pen down and set the font
"note cls has no inpact on these settings
#1.gb "down ; font com c_sans 48"

‘good practice to start wth a clean sheet
#1.gb "cls"

"draw ny static graphics

#1.gb "fill cyan ; backcolor red ; color red"
#1.gb "place 100 50 ; boxfilled 300 150"
#1.gb "place 300 150 ; circlefilled 100"
#1.gb "backcol or cyan ; color red"

#1.gb "place 50 100 ;\1"

"now flush the graphics once and once only
#1.gb "flush"
wai t

‘click on the title bar of the w ndows and
'slide the wi ndow off screen and back,
"the graphics are retained. Remout the

page 4/ 12

Liberty BASIC Programmer's Encyc

"flush command and try again.

[quit]
cl ose #1
end

Refreshed graphics
If you are painting fresh graphics, that completely replace the previous graphics, then you must delsegment

the previous segment prior to drawing and flushing the next. That way there is only ever one segment in
memory.

N -
1

|

Memory use is managed to one segment.

"this is the refreshed graphic exanple, only one segnent
'"is ever retained in nenory.

nomai NWi n

W ndowv dth = 600

W ndowHei ght = 400

UpperLeft X = (Di splayWdt h- W ndowWN dt h)/ 2
UpperLeftY = (Di spl ayHei ght - WndowHei ght)/ 2

button #1.b, "Draw G aphic", [nextdraw ng], UL, 250, 340
textbox #1.tb 350, 340, 100, 25

gr aphi cbox #1.gb, 50, 25, 500, 300

open "Refreshed G aphic Exanple" for w ndow nf as #1

#1 "trapclose [quit]"

"put the pen down and set the font
"note cls has no inpact on these settings
#1.gb "down ; font com c_sans 48"

"good practice to start wth a clean sheet
#1.gb "cls"

dr awi ng=1
wai t

[next dr aw ng]
"first delete the |ast segnent, it does not matter that
"first time round this loop there isn't a segnent to delete

page 5/ 12

Liberty BASIC Programmer's Encyc

"Liberty will ignore the command
#1.gb "del segnent seg"

'now pai nt over the |ast graphics on screen

if draw ng=1 then 'draw graphics 1
#1.gb "fill pink ; backcolor red ; color red"
#1.gb "place 100 50 ; boxfilled 300 150"
#1.gb "place 300 150 ; circlefilled 100"
#1.gb "backcol or pink"
#1.gb "place 50 100 ;\1"

end if

if drawi ng=2 then 'draw graphics 2

#1.gb "fill yellow ; backcolor green ; color green”

#1.gb "place 300 50 ; boxfilled 400 200"
#1.gb "place 300 200 ; circlefilled 100"
#1.gb "backcol or yel |l ow
#1.gb "place 250 50 ;\2"

end if

if drawi ng=3 then 'draw graphics 3

#1.gb "fill cyan ; backcolor yellow ; color yellow

#1.gb "place 100 200 ; boxfilled 350 250"
#1.gb "place 100 200 ; circlefilled 50"
#1.gb "place 350 200 ; circlefilled 50"
#1.gb "backcol or cyan ; color yell ow
#1.gb "place 200 170 ;\3"

end if

dr awi ng=dr awi ng+1
if draw ng=4 then draw ng=1

"now flush the graphics and store the segnent
"nunber in the variable seg
#1.gb "flush seg"

'The seg variable is catching the segnent id and wll

"increase everytinme through the | oop
"print the segnent id nunber for info
"note the nanme variable "seg" is for internal use.

"to obtain and use the segnent nunber in a variable
"of your own, use segnent vari abl enane

"this wll provide the current segnent nunber,
"deduct one to get the true nunber of the | ast
"flushed segnent.

#1.gb "segment currentsegnent nunber”

page 6/ 12

Liberty BASIC Programmer's Encyc

| ast fl ushed=current segnent nunber -1
#1.tb "Seg ID ";lastflushed
wai t

[quit]
cl ose #1
end

Animated graphics

If you are painting animated graphics by overdrawing and redrawing repetitively you must manage
memory and repetitively discard the current segment. The screen will behave as you expect but unless you
discard the current segment memory use will build. The graphics will not be preserved if the window is
covered or minimized, the repetitively drawing will restore the animation quickly so it does not matter.

SN

Memory use is minimal.

nonai NW n
W ndowWNdth = 600
W ndowHei ght = 400

Upper Left X (Di spl ayW dt h- W ndowW dt h) / 2

Upper LeftY (D spl ayHei ght - W ndowHei ght)/ 2

gr aphi cbox #1.gb, 50, 25,500, 300

open "Ani mated G aphi c Exanple" for w ndow nf as #1
#1 "trapclose [quit]"

#1.gb "down"

x=100
y=100
dx=10
dy=10

timer 17, [draw]
wai t

[dr aw]

"discard the current draw ng history
#1.gb "discard"

page 7/ 12

Liberty BASIC Programmer's Encyc

"overdraw, nove and draw the bal
ol dx=x

ol dy=y

X=X+dX

y=y+dy

i f x>475 then x=475 : dx=dx*-.9
if x<25 then x=25 : dx=dx*-.9

if y>275 then y= 275 : dy=dy*-.9
if y<25 then y=25 : dy=dy*-.9
#1.gb "backcol or buttonface ; col or buttonface”
#1.gb "place ";oldx;" ";oldy
#1.gb "circlefilled 25"

#1.gb "backcolor red ; color red"
#1.gb "place ";x;" ";y

#1.gb "circlefilled 25"

wai t

[quit]
timer O
cl ose #1
end

Background and foreground graphics

If you are going to have a mostly static background and some constantly changing foreground graphics, say
sliders or dials then draw the background, flush that as the first segment. You will retain that segment.
Now draw and flush the foreground segment. Next time through delsegment the foreground segment
redraw the background and then draw and flush the new foreground.

BRI

Memory use will not exceed two segments.

"this is the background graphic exanple, only two segnents
‘are ever retained in nenory.

nomai NWi n

W ndoww dth = 600

W ndowHei ght = 400

UpperLeft X = (Di splayWdt h- WndowWN dth)/2
UpperLeftY = (Di spl ayHei ght - WndowHei ght)/ 2

button #1.b, "Draw Graphic", [nextdrawi ng], UL, 250, 340

page 8/ 12

Liberty BASIC Programmer's Encyc

gr aphi cbox #1.gb, 50, 25, 500, 300
open "Refreshed G aphi c Exanple"” for w ndow nf as #1
#1 "trapclose [quit]"

"put the pen down and set the font
"note cls has no inpact on these settings
#1.gb "down ; font com c_sans 48"

"good practice to start wth a clean sheet
#1.gb "cl s"

"draw t he background

#1.gb "fill pink ; backcolor red ; color red"
#1.gb "place 100 50 ; boxfilled 300 150"
#1.gb "place 300 150 ; circlefilled 100"
#1.gb "backcol or pink"

#1.gb "place 50 100 ;\1"

"now flush as the nanmed segnent "backgroundi mage"
#1.gb "flush backgroundi nage"

dr awi ng=2
wai t

[next dr awi ng]

"first delete the | ast foreground segnent, it does not matter that
"first time round this loop it isn't defined

"Liberty will ignore the command

#1.gb "del segnent foregroundi mage"

"redraw t he background using its segnent nane
#1.gb "redraw backgroundi mage"

"now pai nt the new foreground i nage

"notice that the foreground i nages do not use

"full screen fills.

if drawi ng=2 then 'draw graphics 2
#1.gb "backcol or green ; col or green”
#1.gb "place 300 50 ; boxfilled 400 200"
#1.gb "place 300 200 ; circlefilled 100"
#1.gb "backcol or red"
#1.gb "place 180 120 ;\2"

end if

if drawi ng=3 then 'draw graphics 3
#1.gb "backcol or yellow ; color yell ow

page 9/ 12

Liberty BASIC Programmer's Encyc

#1.gb "place 100 200 ; boxfilled 350 250"
#1.gb "place 100 200 ; circlefilled 50"
#1.gb "place 350 200 ; circlefilled 50"
#1.gb "backcolor red ; color yell ow
#1.gb "place 230 170 ;\3"

end if

dr awi ng=dr awi ng+1
if draw ng=4 then draw ng=2

"now flush the current history as the new foreground segnment
"using the foregroundi nage nane

#1.gb "flush foregroundi nage"

wai t

[quit]
cl ose #1
end

Multiple segment graphics

If you want you can maintain several segments in memory and change the order they appear on screen.
The segments are redrawn very quickly and this strategy is most useful for animated or semi animated
drawing. A limitation of the strategy is that ALL undeleted segments will be redrawn if the window is
covered or minimized. If you are running an animation or timed drawing it won't matter. If it does matter
you will need to choose one of the more static strategies listed above.

Most often you will build partial or transparent segments. By that I mean the drawing will fill only parts of
the screen. If you use fills they will cover graphics behind. The segments are maintained in memory in the
Z order they were created. They can be pulled to the front of the screen with redraw, so changing the Z
order. If the segment has a full screen fill in it, all graphics will be hidden when that segment is redrawn.
You might choose to do this and have a background segment, in this way you can hide and show any
segments you wish.

Slide the window off screen to see the limitation, all segments come into view when you slide it back. We
really need Carl to give us #1.gb "hide segmentname" and #1.gb "show segmentname" commands to get
the very best from segments.

page 10/ 12

Liberty BASIC Programmer's Encyc

Memory use builds depending on segments used.

"this is the nultiple segnent graphic exanple,
"this exanple stores four segnents
nomai nw n
W ndowN dth = 600
W ndowHei ght = 400
Upper Left X (Di spl ayW dt h- W ndowW dt h) / 2
UpperLeftY = (Di spl ayHei ght - WndowHei ght)/ 2
button #1.b, "Wpe", [w pe], UL, 100, 340
button #1.b, "Red", [red], UL, 150, 340
button #1.b, "G een", [green], UL, 200, 340
button #1.b, "Yellow', [yellow], UL, 250, 340
gr aphi cbox #1.gb, 50, 25,500, 300

open "Ml tiple Segnent Exanple" for w ndow nf as #1

#1 "trapclose [quit]"

'good practice to start with a cl ean sheet
#1.gb "cls ; down"

'create a segnent that appears to clear the screen
#1.gb "fill buttonface"
#1.gb "flush w pescreensegnent”

‘create a second segment

#1.gb "backcolor red ; color red"

#1.gb "place 100 50 ; boxfilled 300 150"
#1.gb "place 300 150 ; circlefilled 100"
#1.gb "flush redsegnent™

"create a third segnent

#1.gb "backcol or green ; color green"
#1.gb "place 300 50 ; boxfilled 400 200"
#1.gb "place 300 200 ; circlefilled 100"
#1.gb "flush greensegnent”

‘create a fourth segnent

#1.gb "backcol or yellow ; color yell ow
#1.gb "place 100 200 ; boxfilled 350 250"
#1.gb "place 100 200 ; circlefilled 50"
#1.gb "place 350 200 ; circlefilled 50"
#1.gb "flush yel | owsegnent”

"pretend to clear the screen

page 11/12

Liberty BASIC Programmer's Encyc

#1.gb "redraw w pescreensegnent”

"now wait for user input

"any of the four segnents can be redrawn
‘instantly click the buttons in various
"orders to see the inpact

wai t

[Wi pe]
#1.gb "redraw w pescreensegnent”
wai t

[red]
#1.gb "redraw redsegnent”
wai t

[green]
#1.gb "redraw greensegnent”
wai t

[yel | ow]
#1.gb "redraw yel | owsegnent

wai t

[quit]
cl ose #1
end

page 12/ 12

http://www.tcpdf.org

	Graphic Segments

