Liberty BASIC Programmer's Encyc

Joystick and Gamepad Input

Rod
Joystick and Gamepad Input | The port | Simple Joystick | Device capabilities | Native command set |

Enhanced API options

The port

Your PC supports quite a variety of input devices. In modern parlance they are called HIDs (Human Input
Devices), keyboards, mice, graphic pads, touchscreens and an old stalwart, the joystick or game pad. Now
there use to be a dedicated joystick port , latterly called a game port, on every PC.

That has fallen away and since Vista the game port is no longer supported. It matters not a whit to Liberty
BASIC as it is perfectly capable of reading and dealing with HID devices which are most often connected
via USB, (Universal Serial Bus).

In most cases the native command set is all that you will need. READJOYSTICK (n) will read the current
status of joystick (n). (n) can be 1 or 2. So you can plug in two, USB based, standard two or three axis
joysticks and use their input very easily in your Liberty BASIC programs.

But it does not end there. With API calls you can read in up to six axis of movement from up to sixteen
devices and on top of that read in the status of up to sixteen buttons from each device!

Simple Joystick

A simple joystick will usually support two axis of movement, X and Y and two buttons. The axis of
movement are returned as numbers between 0 and 65535 (256*256). 0 means fully down, 32767 or
thereabouts means centred and 65535 means fully up. I say thereabout because the game pad input is a
little erratic.

It is erratic because it is cheap and cheerful but nevertheless extremely efficient and useful. Whatever
hardware supplies the readings, be it on your PC, on a PCI card or on a USB based dongle, it operates
essentially the same way. The stick moves a potentiometer, a pot, a variable resistor. This resistor controls
how fast a capacitor discharges, the reading is taken by timing when the voltage across it falls from +5v to
+0v, 1 or 0 in computer speak. The time interval will be short if the resistance is low and high if the
resistance is high. This is what supplies the "analog" nature of the input.

It is a fast, repetitive process. The timing of the pulse to charge the capacitor, the temperature, mechanical
variance and the graininess of the graphite on the pot all contribute to the erratic nature of the raw data.
You can calm it down with algorithms.

The wiring of these devices is pretty simple no matter how complex the physical device actually looks. If
you want some fun you can hack any old cheap device and get a myriad of robotic or measurement devices

page 1/4

Liberty BASIC Programmer's Encyc

connected to Liberty BASIC, provided you measure resistance, (100k), or button closure.

Device capabilities

To see what your device can do simply plug it in and invoke the Windows control applet. Alyce shows us
how.

"To Display the Joystick Settings
run "rundl | 32. exe shell 32.dll Control RunDLL joy.cpl"

Native command set

The native command set allows up to three axis of movement and two buttons to be read with the
readjoystick (n) command. Once called, reference the dedicated system variables holding the x,y,z (z if it
exists) and button conditions.

readj oystick 1
readj oystick 2
print Joylx, Joyly, Joylz, Joylbuttonl, Joylbutton2
print Joy2x, Joy2y, Joy2z, Joy2buttonl, Joy2button2

Enhanced API options

If we want to go further than that then we need to use API calls. There are two available. joyGetPos and
joyGetPosEx. The first gets pretty much what Liberty BASIC achieves but does include more button info.
The second reads up to six axis of movement and as many buttons as the device supports. Use which one
suits your purpose best.

This code shows all three reading options in action.

page2/4

Liberty BASIC Programmer's Encyc

"define a struct for joyGetPos read, standard two axis joystick
"for nore info [[http://msdn. m crosoft.com en-
us/li brary/w ndows/ deskt op/ dd757110(v=vs. 85) . aspx]]

struct joyO, _

x as long ,_ 'x axis O - 65535 with 32767 as centre
y as long , 'y axis
zaslong, 'z axis if it exists

buttons as | ong "bits set by button press

"define a struct for joyGet PosEx read, ganpads, car sinulators and fli
ght sim yokes

"for nore info [[http://msdn. m crosoft.com en-
us/li brary/w ndows/ deskt op/ dd757112(v=vs. 85) . aspx]]

struct joyexO, _
size as long, _

size of struct

flags as long, 'what to check
x as long, 'x axis
y as long, 'y axis
z as long, 'z axis
r as long, 'r axis
uas long, 'uaxis if it exists
v as long, 'v axis if it exists
buttons as long, _'bits set by button press
butt onNunber as long, ' nunber of buttons pressed
pov as |long, _'point of view value

reservedl as |ong, _
reserved2 as | ong

"store the size of the struct and set the flag value for the info we w
ant

j oyex0. si ze. struct =l en(j oyex0. struct)

joyex0.flags.struct=1 or 2 or 4 or 8 or 128
'ie xyzr axis and buttons info returned

"joysticks can be nunbered 0-15

"replicate the calls and structs for additional joysticks
j oy=0

timer 250,[readit]

wai t

page 3/4

Liberty BASIC Programmer's Encyc

[readit]
cls

"native read

"restricted to three axis and buttons 1 and 2

readjoystick 1 "actually joy O

print "joy0O X ";Joylx,"Y ";Joyly,"Z ";Joylz,,
Joylbuttonl+Joylbutton2

"standard api read

‘restricted to three axis but can read all buttons

calldl'l #w nnmm "joyGetPos", joy as long, joyO as struct |,
result as |ong

print "joy0O X ";joy0.x.struct,

print "Y ";joy0.y.struct,

print "Z ";joy0.z.struct,,

print joyO.buttons. struct

"extended info api read

"up to six axis if they exist and all buttons

calldll #w nmm "joyGet PosEx", joy as |long, joyex0 as struct ,
result as |ong

print "joyOX ";joyex0.x.struct,

print "Y ";joyex0.y.struct,

print "Z ";joyex0.z.struct,

print "R ";joyex0.r.struct,

print joyexO.buttons. struct

wai t

"determine if a button is pressed by anding its val ue agai nst the butt
on val ue.

"button 1=270, button 2=27"1, button 3=272, button 4=273, button 5=2"4,
etc.

"say button 2 and 5 are pressed thats 2+16=18

print 18 and 2

print 18 and 16

Joystick and Gamepad Input | The port | Simple Joystick | Device capabilities | Native command set |
Enhanced API options

page 4 /4

http://www.tcpdf.org

	Joystick and Gamepad Input

