Liberty BASIC Programmer's Encyc

The Liberty BASIC Wire Frame Library

Tomas P Nally -
steelweaverS52

Chapter 5: Using Wire (Focusing on the
FF.LBWF.RequestObjectNameFromXY$() Function)

This fifth chapter of the Liberty BASIC Wire Frame Library series originally appeared in the Liberty BASIC
Newsletter, Issue #139. It is reprinted here with the permission of the author.

Table of Contents

The Liberty BASIC Wire Frame Library

Tomas P Nally user:steelweaver52

Chapter 5: Using Wire (Focusing on the FE.LBWF.RequestObjectNameFromXY$() Function)

What is Wire?

Addressing Wire Model Objects by Name

Using the FF.LBWEF.RequestObjectNameFromXY$() Function

Using the RON Function With Liberty BASIC Mouse Events

Will RON Always Identify the "Correct” Object?

Demo Program: Point2Object3.bas

To see the comprehensive documentation of Wire 1.0 functions, go here.

page 1/7

https://www.wikispaces.com/user/view/steelweaver52
https://www.wikispaces.com/user/view/steelweaver52
/LBWireFrameDoc05

Liberty BASIC Programmer's Encyc

i
Nig s

i

Typical wire model objects

What is Wire?

Wire is the friendly name for the Liberty BASIC Wire Frame Library. This is a library of Liberty BASIC
functions which allow the programmer to create three dimensional images of wire model objects. A "wire
model object" is a 3-D shape whose edges are visible but whose surfaces are transparent. For example, a
wire model image of a cube would look like a cube made from the wire of a coat hanger. A few typical
wire model objects can be seen in the figure above.

This is the fifth article about the Wire library. If you are interested in the previous four articles, you may
read them at the following links:

¢ Chapter 1: Introducing the Liberty BASIC Wire Frame Library
¢ Chapter 2: The Liberty BASIC Wire Frame Library - Version 0.6
¢ Chapter 3: Version 1.0 of the Wire Frame Library is On the Horizon

* Chapter 4: Wire 1.0 Released (Making Complex Objects With Wire)

The complete documentation of the Wire function library can be found in this companion document. If
you are already sufficiently familiar with Wire and would like a starter program from which to build an
application,

LBWF10_template.zip

e Details
e Download
e |3KB

for the Liberty BASIC source file LBWF10_template.bas.

page2/7

http://www.libertybasic.com
/LBWFCh01
/LBWFCh02
/LBWFCh03
/LBWFCh04
/LBWireFrameDoc05
/file/view/LBWF10_template.zip/30132042/LBWF10_template.zip
/file/view/LBWF10_template.zip/30132042/LBWF10_template.zip
/file/detail/LBWF10_template.zip
/file/view/LBWF10_template.zip/30132042/LBWF10_template.zip
http://www.libertybasic.com
/LBWF05SourceCode

Liberty BASIC Programmer's Encyc

Before we talk about the FF.LBWF.RequestObjectNameFromXY$() function, it's important that we
discuss how objects are addressed in Wire.

Addressing Wire Model Objects by Name

Three dimensional objects created using Wire's functions have a number of properties. Among an object's
properties are name, type, color, and line thickness. While an object's type, color and line thickness can be
changed by invoking Wire's functions, the object's name will remain unchanged from the instant the
object is created. (That's the way Wire operates at this time. No predictions are being made for the future
operability of Wire.)

The constancy of an object's name is important because the programmer will manipulate the object by
referring to it by name. For example, say that I have an object called "conel". If I want to rotate this object
by 62 degrees about its Y-axis, I do so by making the following call to a Wire function:

AAA = FF. LBWF. Rot at e(bj ect About Y("conel", 62)

Note the object's name, "conel" in the arguments of the function. Addressing objects by name is logical
and seems to work very well.

However, if you are programming a Wire application, you would not necessarily want to give your users
the burden of remembering the name of every wire model object created during a session. After all,
Version 1.0 of Wire allows the creation of 500 objects! It would be much more helpful if your users could
select an object, say, by clicking on it with the mouse rather than by typing the object's name.

The purpose of FF.LBWF.RequestObjectNameFromXY$() is to make object selection by mouse-click
possible. The function doesn't remove the need for object names. Rather, it gives the programmer access
to an object's name via a mouse-click.

Using the FF.LBWF.RequestObjectNameFromXY$() Function

The function identified above, let's call it ""RON"' for "'Request Object Name'', takes three arguments.
RON''s first two arguments, identified as Scr eenXand Scr eenY, consist of the X and y

coor di nat es of a single pixel within the Liberty BASIC gr aphi cbox where the 3-D objects are
being drawn. The third argument, called pi xel Li mi t, is an "allowable offset distance" in pixels from
the screen point identified by the coordinates (Scr eenX, Scr eenY). When used in your source code, the
function will look like this:

AAA$ = FF. LBW. Request Obj ect NaneFr omXY$(Scr eenX, ScreenY, pixelLinit)

This function will return the name of that object which has a line which passes near (or through) the

page 3/7

http://www.libertybasic.com

Liberty BASIC Programmer's Encyc

graphicbox pixel having coordinates Scr eenXand Scr eenY. To understand this better, see the figure
below.

d. the straight line
distance between
Point "P" and the

box ohject, in pixels . 7 O, ity

v screen coordinates
WA (=173, y=86)

—Box object
called "blughox”

fig jpg

This figure represents a Liberty BASIC gr aphi cbox control. It contains a 3D wire model object named
"bluebox". In addition, a single pixel is identified in the gr aphi cbox with a red cross. The screen (or
graphicbox) coordinates of that pixel are

x = 173 and y = 88

We are going to use this information in the RON function, but first we must designate a value for
pi xel Li m t . We'll do that as we set the values for all three arguments prior to calling the function:

Using the RON Function With Liberty BASIC Mouse Events

The most efficient way to put RON into service is to use it in conjunction with Liberty BASIC's handling
of mouse event s. For example, the programmer can set up a routine to process all | eft nouse
button clicks.

Recall that the location of the mouse pointer is held in the two variables, MouseX and MouseY. The
contents of these two variables are updated continuously as the mouse moves within the gr aphi cbox.
When the user clicks the | eft nouse but t on, the programmer can capture the location of the pointer
at the time of the | ef t - cl i ck by reading the variables MouseX and MouseY. Then, the values of
MouseXand MbuseY can be stored in variables which are subsequently used as the Scr eenX and

Scr eenY arguments in the function call to RON. Here is a short code snippet which shows how that can
be done:

"Establish the code bl ock [MbuseLeftButtonUp] as the routine which
'processes the | eftButtonUp event...

print #main.wscene, "setfocus; when | eftButtonUp [MouselLeftButtonUp]"
Wi t

[MouseLef t But t onUp]

page 4 /7

http://www.libertybasic.com
http://www.libertybasic.com

Liberty BASIC Programmer's Encyc

ScreenX = MouseX ' Capture the x-coordinate of the pointer

"at the tinme of the nopuse event.

ScreenY = MouseY 'Capture the y-coordinate of the pointer
"at the tinme of the nouse event.

pixelLimt = 3 "Set the pixelLimt to 3...

"...then call the RON function...
Obj ect Nanme$ = FF. LBWF. Request Obj ect NameFr onXY$(ScreenX, ScreenY, pi xel
Limt)

Wai t

When this code section executes, the RON function will find an object located within 3 pixels of the pixel
that was clicked, and place that object's name in the string variable, ObjectName$. In the event that no
object was within 3 pixels, the RON function will return '"'null00"'.

Will RON Always Identify the ''Correct' Object?

Say that the programmer issues a call to the RON function, but there happens to be two objects that are
within pi xel Li m t of Scr eenXand Scr eenY. Which object name does RON return?

Before that is answered, understand that the Wire system records object information in the order in which
the objects are created. If two or more objects happen to be within pi xel Li m t of Scr eenXand

Scr eenY, RON will return the name of the first object, based on the order in which the objects were
created, which has a line within pi xel Li m t of Scr eenXand Scr een.

Because of RON's potential to return the name of the "wrong" object when two objects are near to
ScreenXand Scr eenY, the programmer should consider providing the user with feedback on the user's
selection. For example, if the user clicks on an object, the programmer can change the color of that object
to light gray as a way to tell the user, "this is the object that RON has identified". If it happens to be the

"wrong" object, then the programmer can allow the user to cancel out of the current operation, and select a
different part of the object which will be less confusing to RON.

Demo Program: Point2Object3.bas

Table of Contents

The Liberty BASIC Wire Frame Library

Tomas P Nally user:steelweaver52

page 5/7

Liberty BASIC Programmer's Encyc

Chapter 5: Using Wire (Focusing on the FF.LBWF.RequestObjectNameFromXY$() Function)
What is Wire?

Addressing Wire Model Objects by Name

Using the FF.LBWF.RequestObjectNameFromXY$() Function

Using the RON Function With Liberty BASIC Mouse Events

Will RON Always Identify the "Correct" Object?

Demo Program: Point20bject3.bas

Download

Point20bject3.zip

e Details
e Download
e [4KB

for the demo program, Point20bject3.bas, which puts the RON function to the test. The program draws
six pyramids on top of a grid. The user is invited to click on any of the pyramids, and watch them translate,
rotate, change color, or change line thickness. As an object is selected, its name appears in a textbox at the
bottom of the application's window.

The user can also click a button to randomly change the camera location, at which time she can click on
the pyramids again. This demonstrates that Wire always knows the screen location of every object, and is
able to use that knowledge in the RON function.

Tom Nally
Steelweaver52@aol.com

Chapter 1: The Liberty BASIC Wire Frame Library
Chapter 2: The Liberty BASIC Wire Frame Library - Version 0.6

Chapter 3: Version 1.0 of the Wire Frame Library is On the Horizon
Chapter 4: Wire 1.0 Released (Making Complex Objects With Wire

page 6 /7

/file/view/Point2Object3.zip/30132099/Point2Object3.zip
/file/view/Point2Object3.zip/30132099/Point2Object3.zip
/file/detail/Point2Object3.zip
/file/view/Point2Object3.zip/30132099/Point2Object3.zip
/LBWF05DemoCode
mailto:Steelweaver52@aol.com
/LBWFCh01#Ch01
/LBWFCh02#Ch02
/LBWFCh03#Ch03
/LBWFCh04#Ch04

Liberty BASIC Programmer's Encyc

Chapter 5: Using Wire (Focusing on the FF.LBWF.RequestObjectNameFromXY$() Function)
Chapter 6: Using Wire (Strange Things, Reminders, and Tips)

Note: There were some minor editing changes made to this article from the original. These changes were
made with the author's permission and do not alter the informational content of the article in any way.
Specifically, references to issues of the Liberty BASIC Newsletters were changed to also include chapters.
This change was made for the singular purpose of providing clarity and ease in navigating throughout these

Liberty BASIC Programmer's Encyclopedia pages. -
JanetTerra

page 7/7

/LBWFCh05#Ch05
/LBWFCh06#Ch06
https://www.wikispaces.com/user/view/JanetTerra
https://www.wikispaces.com/user/view/JanetTerra
http://www.tcpdf.org

	LBWFCh05

