Liberty BASIC Programmer's Encyc

Chapter 2: Documentation of Liberty BASIC Wire Frame Version (0.6
Functions

Tom Nally -
steelweaverS52

Return to Chapter 2: The Liberty BASIC Wire Frame Library - Version 0.6

Contents

Functions Which Affect the View

e Function FEF.I. BWF.Camera(CamX., CamY, CamZ. VCtrX, VCtrY, VCtrZ. ZoomFac)

Function FE.I. BWF.Cameral ocation(CamX, CamY, CamZ7)

Function FE.I. BWF.ViewingCenter(VCtrX, VCtrY, VCtrZ)

Function FF.L. BWF.ZoomFactor(ZoomFac)

Function FE.I. BWF.ScreenCenter(ScrCenterX, ScrCenterY)

¢ Function FE.LBWF.PointCameraAtObject(ObjectName$)

Functions Affecting the Graphicbox
 Function FF.LBWF.BackGroundColor(BGColor$)
¢ Function FF.LBWF.ClearGraphicScreen()
Functions Which Set the Properties of the Axes

¢ Function FE.LBWEF.SetAxesProperties(Axesl.ength, AxesThickness)

e Function FF.LBWEF.ShowAxes()

e Function FF.LBWEF.HideAxes()

Functions Which Create Objects

page 1/28

https://www.wikispaces.com/user/view/steelweaver52
https://www.wikispaces.com/user/view/steelweaver52
/LBWFCh02
/LBWireFrameDoc02#Function01
/LBWireFrameDoc02#Function02
/LBWireFrameDoc02#Function03
/LBWireFrameDoc02#Function04
/LBWireFrameDoc02#Function05
/LBWireFrameDoc02#Function06
/LBWireFrameDoc02#Function07
/LBWireFrameDoc02#Function08
/LBWireFrameDoc02#Function09
/LBWireFrameDoc02#Function10
/LBWireFrameDoc02#Function11

Liberty BASIC Programmer's Encyc

e Function FE.LBWF.CreateBox(BoxName$, xdim, zdim, boxheight, BoxColor$)

e Function FF.LBWEF.CreateCylinder(CylName$. radius, numSides, cylheight, CylColor
e Function FF.. BWEF.CreatePyramid(pyrName$. xdim. zdim. pyrheight. pyrColor
e Function FF.LBWEF.CreateCone(ConeName$, radius. numSides. coneheight, ConeColor

e Function FF.LBWF.CreatePolygon(PolyName$. radius. numSides, PolyColor

e Function FF.LBWEF.CreateDome(DomeName$, radius, numSides, DomeColor

¢ Function FF.LBWF.CreateLine(LineName$. x1. v1. z1. x2. v2. z2. LineColor$)

e Function FF.LBWF.CreateCyl2(Cyl2Name$. radiusBottum, radiusTop., numSides, cyl2height
Cyl2Color$)

Functions Which Set the Properties of Objects

¢ Function FF.LBWF.ObjectSetColor(ObjectName$, NewColor$)

¢ Function FE.LBWF.ObjectSetLineThickness(ObjectName$, LineThickness)

¢ Function FEF.LBWF.HideObject(ObjectName$)

¢ Function FEF.LBWF.ShowObject(ObjectName$)

¢ Function FF.LBWF.ObjectAssignCustomType(ObjectName$. CustomType$)

e Function FF.LBWF.HideObjectsOf Type(ObjectType$)

e Function FE.LBWF.ShowObjectsOf Type(ObjectType$)

e Function FF.LBWF.HideAllObjects()

¢ Function FF.LBWF.ShowAllObjects()

Functions Which Translate or Rotate Objects
e Function FF.I. BWEF.TranslateObject(ObjectNameS$. transX. transY, transZ

e Function FF.I. BWF.MoveObjectAbsolute(ObjectName$. pX. pY. pZ

page 2 /28

/LBWireFrameDoc02#Function12
/LBWireFrameDoc02#Function13
/LBWireFrameDoc02#Function14
/LBWireFrameDoc02#Function15
/LBWireFrameDoc02#Function16
/LBWireFrameDoc02#Function17
/LBWireFrameDoc02#Function17
/LBWireFrameDoc02#Function18
/LBWireFrameDoc02#Function19
/LBWireFrameDoc02#Function20
/LBWireFrameDoc02#Function20
/LBWireFrameDoc02#Function21
/LBWireFrameDoc02#Function22
/LBWireFrameDoc02#Function23
/LBWireFrameDoc02#Function24
/LBWireFrameDoc02#Function25
/LBWireFrameDoc02#Function26
/LBWireFrameDoc02#Function27
/LBWireFrameDoc02#Function28
/LBWireFrameDoc02#Function29
/LBWireFrameDoc02#Function30
/LBWireFrameDoc02#Function31

Liberty BASIC Programmer's Encyc

e Function FF.I. BWF.RotateObjectAboutY(ObjectName$. YRotationInDegrees

e Function FF.LBWF.RotateObjectAboutX(ObjectName$, XRotationInDegrees)
* Function FEF.LBWF.RotateObjectAboutZ(ObjectName$, ZRotationInDegrees)

e Function FF.LBWEF.TranslateObjectsOf Type(ObjectType$. transX. transY, transZ

Functions Which Draw One or More Objects

¢ Function FF.LBWF.DrawObject(ObjectName$)

¢ Function FF.LBWF.DrawAllObjects()

* Function FE.LBWF.DrawObjectsOf Type(ObjectType$)

Functions Which Return Information About Objects or the LBWF System
(""Request' Functions)

e Function FF.LBWF.RequestLibraryResources$()

Function FF.LBWF.RequestRemainingResources$()

Function FF.LBWF.RequestObjectGeometricCenter$(ObjectName$)

Function FF.LBWEF.RequestObjectColor$(ObjectName$)

Function FF.LBWF.RequestObjectLineThickness(ObjectName$)

Function FE.LBWF.RequestObjectType$(ObjectName$)

Function FEF.LBWF.RequestObjectExtents$(ObjectName$)

Function FF.LBWF.RequestObjectVisibleState(ObjectName$)

Miscellaneous Functions

¢ Function FF.LBWF.ZeroAllData()
* Function FF.LBWF.PauseMilliseconds(DelayMS)
¢ Function FF.LBWEF.PauseUsingTimer(DelayMS)
¢ Function FFE.LBWF.ATAN2(X, y)

page 3 /28

/LBWireFrameDoc02#Function32
/LBWireFrameDoc02#Function33
/LBWireFrameDoc02#Function34
/LBWireFrameDoc02#Function35
/LBWireFrameDoc02#Function36
/LBWireFrameDoc02#Function37
/LBWireFrameDoc02#Function38
/LBWireFrameDoc02#Function39
/LBWireFrameDoc02#Function40
/LBWireFrameDoc02#Function41
/LBWireFrameDoc02#Function42
/LBWireFrameDoc02#Function43
/LBWireFrameDoc02#Function44
/LBWireFrameDoc02#Function45
/LBWireFrameDoc02#Function46
/LBWireFrameDoc02#Function47
/LBWireFrameDoc02#Function48
/LBWireFrameDoc02#Function49
/LBWireFrameDoc02#Function50

Liberty BASIC Programmer's Encyc

¢ Function FF.LBWF.LBWFVersion$()
¢ Function FF.I. BWF.About()

Functions Which Affect the View
¢ Function FF.LBWF.Camera(CamX, CamY, CamZ, VCtrX, VCtrY, VCtrZ, ZoomFac)

In order to create a wire model view, the programmer must establish the point in space where the camera
resides, and then identify the point in space where the camera points.

¢ CamX, CamY, CamZ - The x-, y- and z-coordinates of the camera location.

e VCurX, VCurY, VCtrZ - The x-, y- and z-coordinates of the point in space where the camera is
pointed.

e ZoomFac - The zoom factor. Start out by assigning ZoomFac = 1. If the image is too large or too
small, adjust accordingly.

Calling this function doesn't change the picture in the gr aphi cbox instantly. Rather, the picture will not
change until a subsequent FE.LBWF.DrawObject(), FE.LBWF.DrawAllObjects(), or

FE.LBWEF.DrawObjectsOf Type() function is called.

As of version 0.6 of the library, the programmer can also change the camera location, the viewing center,
and the zoom factor individually.

Top of Page

¢ Function FF.LBWF.CameraLocation(CamX, CamY, CamZ)

Typically, the programmer has no need to change the camera location, the viewing center, and the zoom
factor all at once. The FF.LBWF.CameraL.ocation() function was created so that the programmer can
change the location of the camera without worrying about the viewing center or the zoom factor. This
function can be seen as a subset of function FE.LBWF.Camera().

e CamX - The x-coordinate of the camera location.

page 4 /28

/LBWireFrameDoc02#Function51
/LBWireFrameDoc02#Function52
/LBWireFrameDoc02#Function36
/LBWireFrameDoc02#Function37
/LBWireFrameDoc02#Function38
/LBWireFrameDoc02#Function02
/LBWireFrameDoc02#Function03
/LBWireFrameDoc02#Function04
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function01

Liberty BASIC Programmer's Encyc

>CamY - The y-coordinate of the camera location.
>CamZ - The z-coordinate of the camera location.

Calling this function doesn't instantly change the picture in the gr aphi cbox. Rather, the picture will not
change until a subsequent FE.LBWF.DrawObject(), FE.LBWF.DrawAllObjects(), or

FE.LBWEF.DrawObjectsOf Type() function is called.

Top of Page

¢ Function FF.LBWF.ViewingCenter(VCtrX, VCtrY, VCtrZ)
The viewing center is that point in space where the camera is pointed. This function was created to allow

the programmer to change the viewing center without calling the FE.LBWF.Camera() function, which
requires seven arguments. FF.LBWF.ViewingCenter() can be considered a subset of

FE.LBWEF.Camera().

® VCtrX - The x-coordinate of the point in space where the camera is pointed.
® VCtrY - The y-coordinate of the point in space where the camera is pointed.
¢ VCtrZ - The z-coordinate of the point in space where the camera is pointed.

Calling this function doesn't instantly change the picture in the gr aphi cbox. Rather, the picture will not
change until a subsequent FE.LBWF.DrawObject(), FE.LBWF.DrawAllObjects(), or

FE.LBWEF.DrawObjectsOf Type() function is called.

Top of Page

¢ Function FF.LBWF.ZoomFactor(ZoomFac)

The zoom factor effects how large the objects appear when they are drawn in the graphicbox. This
function requires a single argument. Typically, the programmer needs to experiment with the size of the
zoom factor in order to make her objects appear the right size. Start with a zoom factor of 1, and then

page 5/28

/LBWireFrameDoc02#Function36
/LBWireFrameDoc02#Function37
/LBWireFrameDoc02#Function38
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function01
/LBWireFrameDoc02#Function01
/LBWireFrameDoc02#Function36
/LBWireFrameDoc02#Function37
/LBWireFrameDoc02#Function38
/LBWireFrameDoc02#LBWFDoc02Top

Liberty BASIC Programmer's Encyc

change it as needed. (The programmer can also set the zoom factor by calling the function
FE.LBWEF.Camera().)

e ZoomFac - The zoom factor.

Calling this function doesn't instantly change the picture in the gr aphi cbox. FE.LBWF.DrawObject(),
FE.LBWF.DrawAllObjects(), or FE.LBWF.DrawObjectsOfType().

Top of Page

¢ Function FF.LBWF.ScreenCenter(ScrCenterX, ScrCenterY)

This function establishes the "screen center". Essentially, the screen center is the point in your Liberty
BASIC gr aphi cbox where the viewing center is mapped. The viewing center is discussed here.

¢ ScrCenterX - Usually, this is the x-coordinate of the center of the graphicbox
¢ ScrCenterY - Usually, this is the y-coordinate of the center of the graphicbox

Occasionally, the programmer does not want to plot the 3D image at the center of the gr aphi cbox. In
that case, move ScrCenterX and ScrCenterY accordingly.

Top of Page

¢ Function FF.LBWF.PointCameraAtObject(ObjectName$)

Recall that the viewing center is that point in space to which the camera points. The
FF.LBWF.PointCameraAtObject() sets the viewing center to the geometric center of the object named
as an argument in the function.

page 6 /28

/LBWireFrameDoc02#Function01
/LBWireFrameDoc02#Function36
/LBWireFrameDoc02#Function37
/LBWireFrameDoc02#Function38
/LBWireFrameDoc02#LBWFDoc02Top
http://www.libertybasic.com
http://www.libertybasic.com
/LBWireFrameDoc02#Function03
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function03

Liberty BASIC Programmer's Encyc

¢ ObjectName$ - The name of the object at which you want to point the camera.

In other words, if the programmer wanted the camera to point an an object called "RedCylinder", she
would issue this function call

AAA = FF. LBWF. Poi nt Camer aAt Obj ect (" RedCyl i nder ™).

Calling this function doesn't instantly change the picture in the gr aphi cbox. Rather, the picture will not
change until a subsequent FE.LBWF.DrawObject(), FE.LBWF.DrawAllObjects(), or

FE.LBWEF.DrawObjectsOf Type() function is called.

Top of Page

Functions Affecting the Graphicbox
¢ Function FF.LBWF.BackGroundColor(BGColor$)
Calling this function will identify the background color of the graphic box. After this function has been

called, the graphicbox will be painted with the color every time the FE.LBWEF.ClearGraphicScreen()
function is called.

* BGColor$ - A string identifying the background color of the graphicbox, using the typical Liberty
BASIC methods for indicating colors.

Top of Page

¢ Function FF.LBWF.ClearGraphicScreen()

This function clears the graphicbox and paints the background with the color identified in the
FE.LBWF.BackGroundColor() function. The FF.LBWF.ClearGraphicScreen() function requires no
arguments.

Top of Page

page 7 /28

/LBWireFrameDoc02#Function36
/LBWireFrameDoc02#Function37
/LBWireFrameDoc02#Function38
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function08
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function07
/LBWireFrameDoc02#LBWFDoc02Top

Liberty BASIC Programmer's Encyc

Functions Which Set the Properties of the Axes
¢ Function FF.LBWF.SetAxesProperties(AxesLength, AxesThickness)
In version 0.6 of the LBWF Library, the default length of the axes lines is 50 units, and the default width

is 2 pixels. However, with the FF.LBWF.SetAxesProperties() function, the programmer can change the
appearance of the axes.

¢ AxesLength - The length of the axes in whatever units the programmer is using.
¢ AxesThickness - The thickness of the axes, in pixels.

The axes will be drawn according to these new properties the next time a FE.LBWF.DrawAllObjects()
function is called, provided that the axes are designated as shown instead of hidden.

Top of Page

¢ Function FF.LBWF.ShowAxes()

By default, the axes are not visible. This function ensures that the axes will be drawn when the
FE.LBWF.DrawAllObjects() function is called. Function FF.LBWF.ShowAxes() requires no arguments.
I like to call this function immediately after calling the Camera and ScreenCenter functions.

When the axes are drawn, the blue line represents the X axi s, the red line represents the y axi s, and
the dark green line represents the z axi s.

Top of Page

¢ Function FF.LBWF.HideAxes()

page 8 /28

/LBWireFrameDoc02#Function37
/LBWireFrameDoc02#Function10
/LBWireFrameDoc02#Function01
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function37
/LBWireFrameDoc02#Function01
/LBWireFrameDoc02#Function05
/LBWireFrameDoc02#LBWFDoc02Top

Liberty BASIC Programmer's Encyc

If the programmer does not want the axes to appear the next time the FE.LBWF.DrawAllObjects()
function is called, she may use Function FF.LBWF.HideAxes(). This function requires no arguments.

Top of Page

Functions Which Create Objects

Version 0.6 of the LBWF Library provides functions for the creation of nine different objects. Below, I
will provide the documentation for each one.

¢ Function FF.LBWF.CreateBox(BoxName$, xdim, zdim, boxheight, BoxColor$)

As the reader could guess, this function creates a box. Understand, however, that the data for the box is
merely created in memory. The box will not be plotted in the gr aphi cbox until a function is called

which draws the object.

BoxName$ - All LBWF objects must be assigned names. Names are handled as strings. The
Library recommends that the programmer use object names without spaces.

xdim - The dimension of the box in the x-direction

zdim - The dimension of the box in the Z-direction

boxheight - The height of the box.

BoxColor$ - All objects must be given a color, passed to the function as a string. See the Liberty
BASIC help files for proper ways to designate colors.

So, where are boxes, and other objects, plotted? The default location of a box is centered on they axi s,

with the bottom of the box resting on the X Z pl ane. All objects are originally positioned similarly.
Elsewhere, I will identify the function that allows the programmer to move any objects she creates.

Top of Page

page 9/28

/LBWireFrameDoc02#Function37
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function36
/LBWireFrameDoc02#LBWFDoc02Top

Liberty BASIC Programmer's Encyc

¢ Function FF.LBWF.CreateCylinder(CylName$, radius, numSides, cylheight, CylColor$)

This function creates the data for a cylinder. The cylinder itself will not appear in the gr aphi cbox until
a function is called with draws the object.

CylName$ - The name of the cylinder, sent to the function as a string.

radius - The radius of the cylinder

¢ numSides - The number of sides that you want the cylinder to have. Not that in the example above,
the cylinder has 20 sides.

cylheight - The height of the cylinder.

¢ CylColor$ - The color of the cylinder, sent to the function as a string.

Top of Page

¢ Function FF.LBWF.CreatePyramid(pyrName$, xdim, zdim, pyrheight, pyrColor$)

This function creates the data for a pyramid. The base of the pyramid resides on the X Z pl ane, and the
axi s of the pyramid is on the global Y axi s. The pyramid itself will not appear in the gr aphi cbox
until a function is called which draws the object.

¢ pyrName$ - The name of the pyramid input as a string. The Library recommends that the
programmer use object names without spaces.

¢ xdim - The dimension of the pyramid in the x-direction
¢ zdim - The dimension of the pyramid in the Z-direction
¢ pyrheight - The height of the pyramid.

e pyrColor$ - The color of the pyramid, passed to the function as a string. See the Liberty BASIC
help files for proper ways to designate colors.

page 10/ 28

/LBWireFrameDoc02#Function36
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function36

Liberty BASIC Programmer's Encyc

Top of Page

¢ Function FF.LBWF.CreateCone(ConeName$, radius, numSides, coneheight, ConeColor$)

This function creates the data for a cone. The base of the cone will be located in the X Z pl ane, and the
axi s of the cone is on the global Y axi s. The cone itself will not appear in the gr aphi cbox until a
function is called which draws the object.

ConeName$ - The name of the cone, sent to the function as a string.

radius - The radius of the cone.

numSides - The number of sides that you want the cone to have.
¢ coneheight - The height of the cone.

>ConeColor$ - The color of the cone, sent to the function as a string.

Top of Page

¢ Function FF.LBWF.CreatePolygon(PolyName$, radius, numSides, PolyColor$)
This function creates the data for a polygon. When created, the polygon will reside in the X Z pl ane,

and will be centered on the Y axi s. The polygon itself will not appear in the gr aphi cbox until a
function is called which draws the object.

e PolyName$ - The name of the polygon, sent to the function as a string.
¢ radius - The radius of the polygon.

¢ numsSides - The number of sides that you want the polygon to have. The numSides value should be
an integer.

page 11 /28

/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function36
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function36

Liberty BASIC Programmer's Encyc

e PolyColor$ - The color of the cone, sent to the function as a string.

Top of Page

¢ Function FF.LBWF.CreateGridObject(GridName$, NumUnitsXdirection,
NumUnitsZdirection, UnitSize, GridColor$)

This function creates a grid object. A grid object is a rectangular arrangment of intersecting lines. When
created, a grid object resides in the X Z pl ane, and is centered on the Y axi S. A grid object is very

useful for showing "depth" in the graphicbox when objects are plotted.

The grid itself will not appear in the gr aphi cbox until a function is called which draws the object.

GridName$ - The name of the grid, sent to the function as a string.

NumUnitsXdirection - The number of grid squares that the grid will have in the x-direction.

NumUnitsZdirection - The number of grid squares that the grid will have in the x-direction.

UnitSize - The size of one side of a grid square.

¢ GridColor$ - The color of the cone, sent to the function as a string.

Top of Page

¢ Function FF.LBWF.CreateDome(DomeName$, radius, numSides, DomeColor$)
This function creates a dome, which is the top half of a sphere. The base of the dome resides in the X Z

pl ane, and the dome is centered on the Y axi S. The dome itself will not appear in the gr aphi cbox
until a function is called which draws the object.

® DomeName$ - The name of the dome, sent to the function as a string.

e radius - The radius of the dome.

page 12 /28

/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function36
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function36

Liberty BASIC Programmer's Encyc

¢ numSides - The number of sides that you want the dome to have.

e DomeColor$ - The color of the dome, sent to the function as a string..

Top of Page

¢ Function FF.LBWF.CreateLine(LineName$, x1, y1, z1, x2, y2, z2, LineColor$)

This function creates a line in space. A series of lines can be created within a counted loop in order to
make stars and other interesting geometrical shapes.

Newly created lines will not appear in the gr aphi cbox until a function is called which draws the object.

¢ LineName$ - The name of the line, sent to the function as a string.
* x1, yl, zI - The x-, y- and z-coordinates of the starting point of the line.
® x2,y2, 72 - The x-, y- and z-coordinates of the end point of the line.

¢ LineColor$ - The color of the line, sent to the function as a string..

Top of Page

¢ Function FF.LBWF.CreateCyl2(Cyl2Name$, radiusBottum, radiusTop, numSides,
cyl2height, Cyl2Color$)

A cyl2 is a cylinder like object whose bottom surface and top surface can have different radii. For
example, a cyl2 with a bottom radius of 20 and a top radius of 10 would look like a cone with it's pointed

top removed.

The cyl2 itself will not appear in the graphicbox until a function is called which draws the object.

e Cyl2Name$ - The name of the cyl2, sent to the function as a string.

page 13 /28

/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function36
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function13
/LBWireFrameDoc02#Function36

Liberty BASIC Programmer's Encyc

radiusBottum - The radius of the bottom surface of the cyl2.
¢ radiusTop - The radius of the top surface of the cyl2.

¢ numSides - The number of sides of the cyl2.

cyl2height - The height of the cyl2.

Cyl2Color$ - The color of the line, sent to the function as a string..

Top of Page

Functions Which Set the Properties of Objects
¢ Function FF.LBWF.ObjectSetColor(ObjectName$, NewColor$)

This function allows the programmer to change the color that was assigned to an object when that object
was created with a create function.

¢ ObjectName$ - The name of the object whose color you want to change.
¢ NewColor$ - The new color of the object, sent to the function as a string..

Notice that the programmer can also retrieve the current color of an object by calling the
FE.LBWEF.RequestObjectColor$() function.

Top of Page

¢ Function FF.LBWF.ObjectSetLineThickness(ObjectName$, LineThickness)

When an object is created, the Library will give that object's lines a default thickness of 1 pixel. The
FF.LBWF.ObjectSetLineThickness() function allows the programmer to change the line thickness of
the object named.

page 14 /28

/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#CreateFunction
/LBWireFrameDoc02#Function42
/LBWireFrameDoc02#LBWFDoc02Top

Liberty BASIC Programmer's Encyc

¢ ObjectName$ - The name of the object whose line thickness you want to change.
¢ LineThickness - The new line thickness of the object.

The programmer can also retrieve an object's current line thickness by calling the

FE.LBWF.RequestObjectLineThickness() function.

Top of Page

¢ Function FF.LBWF.HideObject(ObjectName$)

¢ ObjectName$ - The name of the object to be hidden. This must be the name used when the object
was created.

When this function is called, the object is not hidden instantly. Rather, the function sets the visibility
property of the object to "hidden". Then, the object will not be drawn the next time the
FE.LBWEF.DrawAllObjects() function is called.

Note also that the visibility property or visible state of any object can be retrieved at any time by calling the

FF.LBWF.RequestObjectVisibleState() function.

Top of Page

¢ Function FF.LBWF.ShowObject(ObjectName$)

¢ ObjectName$ - The name of the object to be shown. This must be the name used when the object
was created.

When this function is called, the object is not shown instantly. Rather, the function sets the visibility
property of the object to "visible". Then, the object will be drawn the next time the

FE.LBWF.DrawAllObjects() function is called.

Note also that the visibility property or visible state of any object can be retrieved at any time by calling the
FE.LBWF.RequestObjectVisibleState() function.

page 15/28

/LBWireFrameDoc02#Function43
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function37
/LBWireFrameDoc02#Function46
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function37
/LBWireFrameDoc02#Function46

Liberty BASIC Programmer's Encyc

Top of Page

¢ Function FF.LBWF.ObjectAssignCustomType(ObjectName$, CustomType$)

When objects are created, they are given a "type" during creation. The nine default types are box, cylinder,
pyramid, cone, grid, polygon, dome, line and cyl2. These types become properties of the object, and the

programmer can query the object type using the request function, FE.LBWF.RequestObjectType$().

But the programmer can also assign an object a custom type. A custom type is a name selected by the user
to help organize objects into groups or collections. Types are useful because the LBWF Library allows the
programmer to operate on objects based on their type. For instance, the programmer can hide, show, draw
or translate objects based on their type.

¢ ObjectName$ - The name of the object to be assigned a custom type. This must be the name used
when the object was created.

e CustomType$ - The custom type of the object, passed to the function as a string.

Here are a few things to note about custom types:

* An object's custom type will replace the object's default type. However, the programmer can
reassign the object it's default type by using the FF.LBWF.ObjectAssignCustomType() function
again.

e The LBWF Library will not prevent the programmer from assigning an object a custom type that is
exactly the same as one of the default types. For instance, if the programmer has created a cylinder
object, the library will not interfere if the programmer wants to give that object the type, box.

¢ Neither an object's default type or custom type negates the object's unique identity indicated by its

name. In other words, the programmer can still operate on all objects individually inspite of
whatever default types or custom types they have.

Top of Page

page 16 /28

/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function44
/LBWireFrameDoc02#LBWFDoc02Top

Liberty BASIC Programmer's Encyc

e Function FF.LBWF.HideObjectsOf Type(ObjectType$)
This function will hide all objects of the type specified. Note that the objects will not be instantly hidden.

Rather, the objects will merely have their visibility property set to "hidden". Then, the next time a
FE.LBWF.DrawAllObjects() function is called, the objects will not be drawn.

® ObjectType$ - The type identifying the objects that the programmer wants to hide.
The object type passed as a parameter can either be a default type or a custom type.

Note also that the visibility property or visible state of any object can be retrieved at any time by calling the
FFE.LBWF.RequestObjectVisibleState() function.

Top of Page

¢ Function FF.LBWF.ShowObjectsOf Type(ObjectType$)
This function will show all objects of the type specified. Note that the objects will not be instantly shown.

Rather, the objects will merely have their visibility property set to "show". Then, the next time a
FE.LBWEF.DrawAllObjects() function is called, the objects will be drawn.

® ObjectType$ - The type identifying the objects that the programmer wants to show.
The object type passed as a parameter can either be a default type or a custom type.

Note also that the visibility property or visible state of any object can be retrieved at any time by calling the
FE.LBWF.RequestObjectVisibleState() function.

Top of Page

¢ Function FF.LBWF.HideAllObjects()

page 17 /28

/LBWireFrameDoc02#Function37
/LBWireFrameDoc02#Function25
/LBWireFrameDoc02#Function46
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function37
/LBWireFrameDoc02#Function25
/LBWireFrameDoc02#Function46
/LBWireFrameDoc02#LBWFDoc02Top

Liberty BASIC Programmer's Encyc

This function sets the visibility property of all objects currently in inventory to "hidden". Then, the next
time a FE.LBWF.DrawAllObjects() function is called, all objects in inventory will be hidden.

The FF.LBWF.HideAllObjects() function requires no arguments.

Note also that the visibility property or visible state of any object can be retrieved at any time by calling the

FFE.LBWF.RequestObjectVisibleState() function.

Top of Page

¢ Function FF.LBWF.ShowAllObjects()

This function sets the visibility property of all objects currently in inventory to "visible". Then, the next
time a FE.LBWF.DrawAllObjects() function is called, all objects in inventory will be drawn.

The FF.LBWF.ShowAllObjects() function requires no arguments.

Note also that the visibility property or visible state of any object can be retrieved at any time by calling the
FE.LBWF.RequestObjectVisibleState() function.

Top of Page

Functions Which Translate or Rotate Objects
¢ Function FF.LBWF.TranslateObject(ObjectName$, transX, transY, transZ)

To translate an object means to move the object without rotating it. LBWF provides a single translation
function to move an object in any or all of the X, y,or z axes.

¢ ObjectName$ - The name of the object to be translated. This must be the name used when the
object was created.

¢ transX, transY, transZ - The number of units to move the object in the x-, y- and z-directions.

page 18 /28

/LBWireFrameDoc02#Function37
/LBWireFrameDoc02#Function46
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function37
/LBWireFrameDoc02#Function46
/LBWireFrameDoc02#LBWFDoc02Top

Liberty BASIC Programmer's Encyc

Note that this function will always move the object relative to the object's current position. Note also that
the object will not appear to move until a subsequent draw command is issued.

Top of Page

¢ Function FF.LBWF.MoveObjectAbsolute(ObjectName$, pX, pY, pZ)

This function translates the named object such that the object's geometric center now resides at the point
(pX,pY,pZ). In other words, the function moves the object to an absolute point or destination, rather than
moving the object relative to the object's current position.

¢ ObjectName$ - The name of the object to be moved. This must be the name used when the object
was created.

* pX, pY, pZ - The x-, y- and z-coordinates of the destination point to where the object will be
moved.

There might be occasions when the programmer wants to move the object to a specific X and Z location,
but wants the y-coordinate of the object to remain the same. (That is, the programmer wants to move the
object laterally, but doesn't want to "elevate" the object.) When that is the case, the programmer should
request the object's geometric center using the FE.LBWF.RequestObjectGeometricCenter$() function.
When the result is returned from the function, the programmer needs to parse the result for the y-
coordinate of the object's geometric center. This value, then, is passed as pY in the
FF.LBWF.MoveObjectAbsolute() function. That way, the object moves in the X and z directions, but its
y coordinate does not change.

Top of Page

¢ Function FF.LBWF.RotateObjectAboutY(ObjectName$, YRotationInDegrees)

Anobject's| ocal y axi s runs through the geometric center of the object and is parallel to the
gl obal y axis. The FF.LBWF.RotateObjectAboutY() function will rotate the object about its
| ocal y axis.

page 19/28

/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function41
/LBWireFrameDoc02#LBWFDoc02Top

Liberty BASIC Programmer's Encyc

¢ ObjectName$ - The name of the object to be moved. This must be the name used when the object
was created.

¢ YRotationInDegrees - The angle, in degrees, through which the object should be rotated.

Objects also have | ocal x and z axes. These axes always remain "attached" to the geometric center
of the object, and will always be parallel to their corresponding global axes even after a rotation has
occured. For instance, if the programmer rotates an object 45 degrees about the object's | ocal y

axi s, the same object's| ocal x and z axes do not rotate along with the object. Alll ocal axes
stay parallel to the gl obal axes.

The object specified will appear in its new rotated position the next time a FE.LBWF.DrawObject() or a
FF.LBWF.DrawAllObjects() function is called.

Top of Page

¢ Function FF.LBWF.RotateObjectAboutX(ObjectName$, XRotationInDegrees)

This function rotates an object about the object's | ocal x axi s. For a discussion of | ocal and

gl obal axes see the FE.LBWF.RotateObjectAboutY () function.

¢ ObjectName$ - The name of the object to be moved. This must be the name used when the object
was created.

¢ XRotationInDegrees - The angle, in degrees, through which the object should be rotated.

The object specified will appear in its new rotated position the next time a FE.LBWF.DrawQObject() or a

FE.LBWF.DrawAllObjects() function is called.

Top of Page

¢ Function FF.LBWF.RotateObjectAboutZ(ObjectName$, ZRotationInDegrees)

page 20/ 28

/LBWireFrameDoc02#Function36
/LBWireFrameDoc02#Function37
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function32
/LBWireFrameDoc02#Function36
/LBWireFrameDoc02#Function37
/LBWireFrameDoc02#LBWFDoc02Top

Liberty BASIC Programmer's Encyc

This function rotates an object about the object's | ocal z axi s. For a discussion of | ocal and

gl obal axes see the FE.LLBWF.RotateObjectAboutY() function.

ObjectName$ - The name of the object to be moved. This must be the name used when the object was
created.

ZRotationInDegrees - The angle, in degrees, through which the object should be rotated.

The object specified will appear in its new rotated position the next time a FE.LBWF.DrawObject() or a

FE.LBWF.DrawAllObjects() function is called.

Top of Page

¢ Function FF.LBWF.TranslateObjectsOf Type(ObjectType$, transX, transY, transZ)

This function will translate all objects of the type specified. It will translate each object the distance
specified (transX, transY, transZ) relative to the current position of each object.

® ObjectType$ - The type of the objects that the programmer wishes to translate. This can either be a
default type or a custom type.

¢ transX - The distance that the collection will be translated in the x-direction.
¢ transY - The distance that the collection will be translated in the y-direction.
e transZ - The distance that the collection will be translated in the z-direction.

The objects will appear in their new position the next time a FE.LBWF.DrawObject(),

FE.LBWEFE.DrawAllObjects(), or FE.LBWEF.DrawObjectsOf Type() function is called.

Top of Page

Functions Which Draw One or More Objects

¢ Function FF.LBWF.DrawObject(ObjectName$)

page 21 /28

/LBWireFrameDoc02#Function32
/LBWireFrameDoc02#Function36
/LBWireFrameDoc02#Function37
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function36
/LBWireFrameDoc02#Function37
/LBWireFrameDoc02#Function38
/LBWireFrameDoc02#LBWFDoc02Top

Liberty BASIC Programmer's Encyc

e ObjectName$ - The name of the object to be drawn. This must be the name used when the object
was created.

The DrawObject function draws the object identified in the argument. When the function is called, the
object will be drawn regardless of whether its visibility property was set to "hidden" by the
FF.LBWEF.HideObject(ObjectName$) function.

Top of Page

¢ Function FF.LBWF.DrawAllObjects()

This function requires no arguments. The function will draw all objects, except for those whose visibility
property is set to "hidden" by the FE.LBWEF.HideObject() function.

Top of Page

¢ Function FF.LBWF.DrawObjectsOfType(ObjectType$)

This function will draw all objects of the type specified. The objects will be drawn regardless of whether
their visibility property has been set to "hidden".

¢ ObjectType$ - The type identifier of the object collection to be drawn. This can be either a default
type or a custom type.

Top of Page

Functions Which Return Information About Objects or the LBWF System
(""Request' Functions)

¢ Function FF.LBWF.RequestLibraryResources$()

page 22 /28

/LBWireFrameDoc02#Function23
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function23
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#LBWFDoc02Top

Liberty BASIC Programmer's Encyc

In the LBWF Library, node data, line data and object data are stored in arrays. Therefore, the amount of
data that you can store is not unlimited. The FF.LBWF.RequestLibraryResources$() function provides
information about the total capacity of the library before any resources are used.

Specifically, in version 0.6 of the Library the function returns the following string: "4000 4000 500". This
means that the Library routines have the capacity to store data for 4000 nodes, 4000 lines and 500 objects
before any objects are created. The programmer can extract the individual pieces of data from this return
string by using Liberty BASIC's native WORD$() and VAL() functions.

The FF.LBWF.RequestLibraryResources$() function requires no arguments.

Top of Page

¢ Function FF.LBWF.RequestRemainingResources$()
This function is similar to FE.LBWF.RequestLibraryResources$() except that it returns a string containing
the remaining resources while the programmer or user is in the process of creating objects. For instance, if
the function returned the following string -- "3120 3350 420" -- that would mean that the programmer has
enough storage space for 3120 nodes, 3350 lines, and 420 objects.

The FF.LBWF.RequestRemainingResources$() function requires no arguments.

Top of Page

¢ Function FF.LBWF.RequestObjectGeometricCenter$(ObjectName$)
This function will return the X,y and z coor di nat es of the geometric center of the object named.
The result is returned as a string. In the string, the three numbers are separated by spaces, allowing the

programmer to parse the return string to obtain individual coordinate numbers. For example, the function
may return "'65.702 8.666715 106.815547"". This would mean the center of the object named is at

X=65. 702, y=8.666715, z=106.815547

® ObjectName$ - The name of the object of which geometric center coordinates are desired.

page 23 /28

http://www.libertybasic.com
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function39
/LBWireFrameDoc02#LBWFDoc02Top

Liberty BASIC Programmer's Encyc

Note that this function was also mentioned in the description of the FE.LBWF.MoveObjectAbsolute()
function.

Top of Page

¢ Function FF.LBWF.RequestObjectColor$(ObjectName$)

This function returns the color of the object identified as an argument.

® ObjectName$ - The name of the object of which the color is desired.

Remember that the color of an object is set when the object is created, and the object's color can be
changed with the FE.LBWF.ObjectSetColor() function.

Top of Page

¢ Function FF.LBWF.RequestObjectLineThickness(ObjectName$)

This function returns the /ine thickness of the object identified as an argument.

® ObjectName$ - The name of the object of which the line thickness is desired.

Note also that the programmer can set the line thickness with the FE.LBWF.ObjectSetLineThickness()
function.

Top of Page

page 24 /28

/LBWireFrameDoc02#Function31
/LBWireFrameDoc02#Function31
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#CreateFunction
/LBWireFrameDoc02#Function21
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function22
/LBWireFrameDoc02#LBWFDoc02Top

Liberty BASIC Programmer's Encyc

¢ Function FF.LBWF.RequestObjectType$(ObjectName$)

This function returns the fype of the object identified as an argument. The type can either be a default type
or a custom type. Custom types are set with the FE.LBWF.ObjectAssignCustomType() function.

¢ ObjectName$ - The name of the object of which the type is desired.

Top of Page

¢ Function FF.LBWF.RequestObjectExtents$(ObjectName$)

This function essentially returns the X, y, and z coor di nat es of the "bounding box" of the object
named in the function. These six values represent the minimum and maximum X, Y and Z values of the
area that the object occupies in space. This six values are assembled together in a string which can be
parsed by the programmer.

As an example, the function might return the value, '25.2 35.7 86.5 125.9 -55.621 12.448''. The
programmer would interpret these to mean that the object is bounded

in the x- dinension by xmn = 25.2 and xmax 35.7
in the y- dinmension by ymn = 86.5 and ynax = 125.9
and in the z- dinmension by zmn = -55.621 and zmax=12. 448

¢ ObjectName$ - The name of the object whose extents is desired.

Top of Page

¢ Function FF.LBWF.RequestObjectVisibleState(ObjectName$)

This function returns the visibility property of the object as set by any of the functions which allow hiding
or showing of objects.

¢ ObjectName$ - The name of the object whose visibility state is desired.

page 25 /28

/LBWireFrameDoc02#Function25
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#SetProperties
/LBWireFrameDoc02#SetProperties

Liberty BASIC Programmer's Encyc

The quantity returned by the function is an integer. If the visibility property of the object is set to "visible",
then this function will return 1. Otherwise, if the visibility property of the object is set to "hidden", then
this function will return 0.

Top of Page

Miscellaneous Functions

¢ Function FF.LBWF.ZeroAllData()
This function erases all node, line and object data, and essentially resets the entire LBWF system back to
its state at startup. After calling this function, the number of nodes is zero, the number of lines is zero, and

the number of objects is zero.

This function requires no arguments.

Top of Page

¢ Function FF.LBWF.PauseMilliseconds(DelayMS)

This function will cause a delay in program execution by continually querying the system clock until the
designated number of milliseconds has passed. Pause functions are useful during animation to prevent the
screen from being redrawn too rapidly.

¢ DelayMS - The time length of the pause, given in milliseconds.

Liberty BASIC user -
Welopez pointed out that this particular pause function seems to consume all

system resources. For that reason, an alternate pause function is provided which uses Liberty BASIC's
native TIMER command. For the time being, both pause functions will remain in the LBWF Library.

Top of Page

page 26 / 28

/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#LBWFDoc02Top
http://www.libertybasic.com
https://www.wikispaces.com/user/view/Welopez
https://www.wikispaces.com/user/view/Welopez
/LBWireFrameDoc02#Function49
http://www.libertybasic.com
/LBWireFrameDoc02#LBWFDoc02Top

Liberty BASIC Programmer's Encyc

¢ Function FF.LBWF.PauseUsingTimer(DelayMS)

This function creates a pause in system execution by use of Liberty BASIC's native TIMER command. It
may be used as an alternative to the FE.LBWF.PauseMilliseconds(DelayMS) function discussed above.

¢ DelayMS - The time length of the pause, given in milliseconds.

Top of Page

¢ Function FF.LBWF.ATAN2(x, y)

This function returns the arc whose tangent is ('y/ X) . The result is returned in radians. The result will
always be in the range of 0 t0 (2 x pi).

¢ x - The x-length of the right triangle whose angle is desired.
¢ y - The y-length of the right triangle whose angle is desired.

The programmer may never have a reason to use the FF.LBWF.ATAN2() function. However, LBWF
Library itself requires ATAN2 in order to successfully perform the object rotations called for by
FF.LBWEF.RotateObjectAboutY(), FE.I. BWF.RotateObjectAboutX(), and

FE.LBWEF.RotateObjectAboutZ().

Top of Page

¢ Function FF.LBWF.LBWFVersion$()

This function will return the current version of the LBWF Library. It requires no arguments. As of the

page 27 /28

http://www.libertybasic.com
/LBWireFrameDoc02#Function48
/LBWireFrameDoc02#LBWFDoc02Top
/LBWireFrameDoc02#Function32
/LBWireFrameDoc02#Function33
/LBWireFrameDoc02#Function34
/LBWireFrameDoc02#LBWFDoc02Top

Liberty BASIC Programmer's Encyc

publication of this document, the current version of the Library is 0.6.

Top of Page

¢ Function FF.LBWF.About()

This function displays a Liberty BASIC NOTI CE box which contains the LBWEF version number and an
attribution of library authorship to Tom Nally. The function requires no arguments.

Top of Page

Tom Nally
Steelweaver52@aol.com

Note: This linked article accompanies Chapter 2: The Liberty BASIC Wire Frame Library - Version 0.6,
which originally appeared in the Liberty BASIC Newsletter, Issue #135. It is reprinted here with the
permission of the author. -

JanetTerra

page 28 /28

/LBWireFrameDoc02#LBWFDoc02Top
http://www.libertybasic.com
/LBWireFrameDoc02#LBWFDoc02Top
mailto:Steelweaver52@aol.com
/LBWFCh02
https://www.wikispaces.com/user/view/JanetTerra
https://www.wikispaces.com/user/view/JanetTerra
http://www.tcpdf.org

	LBWireFrameDoc02

