
Liberty BASIC Programmer's Encyc

Chapter 4: Documentation of Wire 1.0 (The Liberty BASIC Wire Frame
Functions)

Tom Nally -
 steelweaver52

Return to Chapter 4: Wire 1.0 Released (Making Complex Objects With Wire)

Contents

Functions Which Affect the View

Function FF.LBWF.Camera(CamX, CamY, CamZ, VCtrX, VCtrY, VCtrZ, ZoomFac)

Function FF.LBWF.CameraLocation(CamX, CamY, CamZ)

Function FF.LBWF.ViewingCenter(VCtrX, VCtrY, VCtrZ)

Function FF.LBWF.ZoomFactor(ZoomFac)

Function FF.LBWF.ScreenCenter(ScrCenterX, ScrCenterY)

Function FF.LBWF.PointCameraAtObject(ObjectName$)

Functions Affecting the Graphicbox

Function FF.LBWF.BackGroundColor(BGColor$)

Function FF.LBWF.ClearGraphicScreen()

Functions Which Set the Properties of the Axes

Function FF.LBWF.SetAxesProperties(AxesLength, AxesThickness)

Function FF.LBWF.ShowAxes()

Function FF.LBWF.HideAxes()

Functions Which Create Objects

 page 1 / 30

https://www.wikispaces.com/user/view/steelweaver52
https://www.wikispaces.com/user/view/steelweaver52
/LBWFCh04
/LBWireFrameDoc04#Function01
/LBWireFrameDoc04#Function02
/LBWireFrameDoc04#Function03
/LBWireFrameDoc04#Function04
/LBWireFrameDoc04#Function05
/LBWireFrameDoc04#Function06
/LBWireFrameDoc04#Function07
/LBWireFrameDoc04#Function08
/LBWireFrameDoc04#Function09
/LBWireFrameDoc04#Function10
/LBWireFrameDoc04#Function11

Liberty BASIC Programmer's Encyc

Function FF.LBWF.CreateBox(BoxName$, xdim, zdim, boxheight, BoxColor$)

Function FF.LBWF.CreateCylinder(CylName$, radius, numSides, cylheight, CylColor$)

Function FF.LBWF.CreatePyramid(pyrName$, xdim, zdim, pyrheight, pyrColor$)

Function FF.LBWF.CreateCone(ConeName$, radius, numSides, coneheight, ConeColor$)

Function FF.LBWF.CreatePolygon(PolyName$, radius, numSides, PolyColor$)

Function FF.LBWF.CreateGridObject(GridName$, NumUnitsXdirection, NumUnitsZdirection,
UnitSize, GridColor$)

Function FF.LBWF.CreateDome(DomeName$, radius, numSides, DomeColor$)

Function FF.LBWF.CreateLine(LineName$, x1, y1, z1, x2, y2, z2, LineColor$)

Function FF.LBWF.CreateCyl2(Cyl2Name$, radiusBottum, radiusTop, numSides, cyl2height,
Cyl2Color$)

Function FF.LBWF.CreateComplexObject(ObjectName$, FileName$, ObjectColor$)

Functions Which Set the Properties of Objects

Function FF.LBWF.ObjectSetColor(ObjectName$, NewColor$)

Function FF.LBWF.ObjectSetLineThickness(ObjectName$, LineThickness)

Function FF.LBWF.HideObject(ObjectName$)

Function FF.LBWF.ShowObject(ObjectName$)

Function FF.LBWF.ObjectAssignCustomType(ObjectName$, CustomType$)

Function FF.LBWF.HideObjectsOfType(ObjectType$)

Function FF.LBWF.ShowObjectsOfType(ObjectType$)

Function FF.LBWF.HideAllObjects()

Function FF.LBWF.ShowAllObjects()

Functions Which Translate or Rotate Objects

Function FF.LBWF.TranslateObject(ObjectName$, transX, transY, transZ)

 page 2 / 30

/LBWireFrameDoc04#Function12
/LBWireFrameDoc04#Function13
/LBWireFrameDoc04#Function14
/LBWireFrameDoc04#Function15
/LBWireFrameDoc04#Function16
/LBWireFrameDoc04#Function17
/LBWireFrameDoc04#Function17
/LBWireFrameDoc04#Function18
/LBWireFrameDoc04#Function19
/LBWireFrameDoc04#Function20
/LBWireFrameDoc04#Function20
/LBWireFrameDoc04#Function53
/LBWireFrameDoc04#Function21
/LBWireFrameDoc04#Function22
/LBWireFrameDoc04#Function23
/LBWireFrameDoc04#Function24
/LBWireFrameDoc04#Function25
/LBWireFrameDoc04#Function26
/LBWireFrameDoc04#Function27
/LBWireFrameDoc04#Function28
/LBWireFrameDoc04#Function29
/LBWireFrameDoc04#Function30

Liberty BASIC Programmer's Encyc

Function FF.LBWF.MoveObjectAbsolute(ObjectName$, pX, pY, pZ)

Function FF.LBWF.RotateObjectAboutY(ObjectName$, YRotationInDegrees)

Function FF.LBWF.RotateObjectAboutX(ObjectName$, XRotationInDegrees)

Function FF.LBWF.RotateObjectAboutZ(ObjectName$, ZRotationInDegrees)

Function FF.LBWF.TranslateObjectsOfType(ObjectType$, transX, transY, transZ)

Functions Which Draw One or More Objects

Function FF.LBWF.DrawObject(ObjectName$)

Function FF.LBWF.DrawAllObjects()

Function FF.LBWF.DrawObjectsOfType(ObjectType$)

Functions Which Return Information About Objects or the LBWF System
("Request" Functions)

Function FF.LBWF.RequestLibraryResources$()

Function FF.LBWF.RequestRemainingResources$()

Function FF.LBWF.RequestObjectGeometricCenter$(ObjectName$)

Function FF.LBWF.RequestObjectColor$(ObjectName$)

Function FF.LBWF.RequestObjectLineThickness(ObjectName$)

Function FF.LBWF.RequestObjectType$(ObjectName$)

Function FF.LBWF.RequestObjectExtents$(ObjectName$)

Function FF.LBWF.RequestObjectVisibleState(ObjectName$)

Function FF.LBWF.RequestObjectNameFrom XY$(ScreenX, ScreenY, pixelLimit)

Miscellaneous Functions

Function FF.LBWF.ZeroAllData()

Function FF.LBWF.PauseMilliseconds(DelayMS)

 page 3 / 30

/LBWireFrameDoc04#Function31
/LBWireFrameDoc04#Function32
/LBWireFrameDoc04#Function33
/LBWireFrameDoc04#Function34
/LBWireFrameDoc04#Function35
/LBWireFrameDoc04#Function36
/LBWireFrameDoc04#Function37
/LBWireFrameDoc04#Function38
/LBWireFrameDoc04#Function39
/LBWireFrameDoc04#Function40
/LBWireFrameDoc04#Function41
/LBWireFrameDoc04#Function42
/LBWireFrameDoc04#Function43
/LBWireFrameDoc04#Function44
/LBWireFrameDoc04#Function45
/LBWireFrameDoc04#Function46
/LBWireFrameDoc04#Function54
/LBWireFrameDoc04#Function47
/LBWireFrameDoc04#Function48

Liberty BASIC Programmer's Encyc

Function FF.LBWF.PauseUsingTimer(DelayMS)

Function FF.LBWF.ATAN2(x, y)

Function FF.LBWF.LBWFVersion$()

Function FF.LBWF.About()

Functions Which Affect the View

Function FF.LBWF.Camera(CamX, CamY, CamZ, VCtrX, VCtrY, VCtrZ, ZoomFac)

In order to create a wire model view, the programmer must establish the point in space where the camera
resides, and then identify the point in space where the camera points.

CamX, CamY, CamZ - The x-, y- and z-coordinates of the camera location.

VCtrX, VCtrY, VCtrZ - The x-, y- and z-coordinates of the point in space where the camera is
pointed.

ZoomFac - The zoom factor. Start out by assigning ZoomFac = 1. If the image is too large or too
small, adjust accordingly.

Calling this function doesn't change the picture in the graphicbox instantly. Rather, the picture will not
change until a subsequent FF.LBWF.DrawObject(), FF.LBWF.DrawAllObjects(), or
FF.LBWF.DrawObjectsOfType() function is called.

As of version 0.6 of the library, the programmer can also change the camera location, the viewing center,
and the zoom factor individually.

Top of Page

Function FF.LBWF.CameraLocation(CamX, CamY, CamZ)

Typically, the programmer has no need to change the camera location, the viewing center, and the zoom
factor all at once. The FF.LBWF.CameraLocation() function was created so that the programmer can
change the location of the camera without worrying about the viewing center or the zoom factor. This
function can be seen as a subset of function FF.LBWF.Camera().

 page 4 / 30

/LBWireFrameDoc04#Function49
/LBWireFrameDoc04#Function50
/LBWireFrameDoc04#Function51
/LBWireFrameDoc04#Function52
/LBWireFrameDoc04#Function36
/LBWireFrameDoc04#Function37
/LBWireFrameDoc04#Function38
/LBWireFrameDoc04#Function02
/LBWireFrameDoc04#Function03
/LBWireFrameDoc04#Function04
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function01

Liberty BASIC Programmer's Encyc

CamX - The x-coordinate of the camera location.

>CamY - The y-coordinate of the camera location.

>CamZ - The z-coordinate of the camera location.

Calling this function doesn't instantly change the picture in the graphicbox. Rather, the picture will not
change until a subsequent FF.LBWF.DrawObject(), FF.LBWF.DrawAllObjects(), or
FF.LBWF.DrawObjectsOfType() function is called.

Top of Page

Function FF.LBWF.ViewingCenter(VCtrX, VCtrY, VCtrZ)

The viewing center is that point in space where the camera is pointed. This function was created to allow
the programmer to change the viewing center without calling the FF.LBWF.Camera() function, which
requires seven arguments. FF.LBWF.ViewingCenter() can be considered a subset of
FF.LBWF.Camera().

VCtrX - The x-coordinate of the point in space where the camera is pointed.

VCtrY - The y-coordinate of the point in space where the camera is pointed.

VCtrZ - The z-coordinate of the point in space where the camera is pointed.

Calling this function doesn't instantly change the picture in the graphicbox. Rather, the picture will not
change until a subsequent FF.LBWF.DrawObject(), FF.LBWF.DrawAllObjects(), or
FF.LBWF.DrawObjectsOfType() function is called.

Top of Page

Function FF.LBWF.ZoomFactor(ZoomFac)

 page 5 / 30

/LBWireFrameDoc04#Function36
/LBWireFrameDoc04#Function37
/LBWireFrameDoc04#Function38
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function01
/LBWireFrameDoc04#Function01
/LBWireFrameDoc04#Function36
/LBWireFrameDoc04#Function37
/LBWireFrameDoc04#Function38
/LBWireFrameDoc04#LBWFDoc04Top

Liberty BASIC Programmer's Encyc

The zoom factor effects how large the objects appear when they are drawn in the graphicbox. This
function requires a single argument. Typically, the programmer needs to experiment with the size of the
zoom factor in order to make her objects appear the right size. Start with a zoom factor of 1, and then
change it as needed. (The programmer can also set the zoom factor by calling the function
FF.LBWF.Camera().)

ZoomFac - The zoom factor.

Calling this function doesn't instantly change the picture in the graphicbox. FF.LBWF.DrawObject(),
FF.LBWF.DrawAllObjects(), or FF.LBWF.DrawObjectsOfType().

Top of Page

Function FF.LBWF.ScreenCenter(ScrCenterX, ScrCenterY)

This function establishes the "screen center". Essentially, the screen center is the point in your Liberty
BASIC graphicbox where the viewing center is mapped. The viewing center is discussed here.

ScrCenterX - Usually, this is the x-coordinate of the center of the graphicbox

ScrCenterY - Usually, this is the y-coordinate of the center of the graphicbox

Occasionally, the programmer does not want to plot the 3D image at the center of the graphicbox. In
that case, move ScrCenterX and ScrCenterY accordingly.

Top of Page

Function FF.LBWF.PointCameraAtObject(ObjectName$)

Recall that the viewing center is that point in space to which the camera points. The
FF.LBWF.PointCameraAtObject() sets the viewing center to the geometric center of the object named
as an argument in the function.

 page 6 / 30

/LBWireFrameDoc04#Function01
/LBWireFrameDoc04#Function36
/LBWireFrameDoc04#Function37
/LBWireFrameDoc04#Function38
/LBWireFrameDoc04#LBWFDoc04Top
http://www.libertybasic.com
http://www.libertybasic.com
/LBWireFrameDoc04#Function03
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function03

Liberty BASIC Programmer's Encyc

ObjectName$ - The name of the object at which you want to point the camera.

In other words, if the programmer wanted the camera to point an an object called "RedCylinder", she
would issue this function call

AAA = FF.LBWF.PointCameraAtObject("RedCylinder").

Calling this function doesn't instantly change the picture in the graphicbox. Rather, the picture will not
change until a subsequent FF.LBWF.DrawObject(), FF.LBWF.DrawAllObjects(), or
FF.LBWF.DrawObjectsOfType() function is called.

Top of Page

Functions Affecting the Graphicbox

Function FF.LBWF.BackGroundColor(BGColor$)

Calling this function will identify the background color of the graphic box. After this function has been
called, the graphicbox will be painted with the color every time the FF.LBWF.ClearGraphicScreen()
function is called.

BGColor$ - A string identifying the background color of the graphicbox, using the typical Liberty
BASIC methods for indicating colors.

Top of Page

Function FF.LBWF.ClearGraphicScreen()

This function clears the graphicbox and paints the background with the color identified in the
FF.LBWF.BackGroundColor() function. The FF.LBWF.ClearGraphicScreen() function requires no
arguments.

 page 7 / 30

/LBWireFrameDoc04#Function36
/LBWireFrameDoc04#Function37
/LBWireFrameDoc04#Function38
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function08
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function07

Liberty BASIC Programmer's Encyc

Top of Page

Functions Which Set the Properties of the Axes

Function FF.LBWF.SetAxesProperties(AxesLength, AxesThickness)

In version 0.6 of the LBWF Library, the default length of the axes lines is 50 units, and the default width
is 2 pixels. However, with the FF.LBWF.SetAxesProperties() function, the programmer can change the
appearance of the axes.

AxesLength - The length of the axes in whatever units the programmer is using.

AxesThickness - The thickness of the axes, in pixels.

The axes will be drawn according to these new properties the next time a FF.LBWF.DrawAllObjects()
function is called, provided that the axes are designated as shown instead of hidden.

Top of Page

Function FF.LBWF.ShowAxes()

By default, the axes are not visible. This function ensures that the axes will be drawn when the
FF.LBWF.DrawAllObjects() function is called. Function FF.LBWF.ShowAxes() requires no arguments.
I like to call this function immediately after calling the Camera and ScreenCenter functions.

When the axes are drawn, the blue line represents the x axis, the red line represents the y axis, and
the dark green line represents the z axis.

Top of Page

 page 8 / 30

/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function37
/LBWireFrameDoc04#Function10
/LBWireFrameDoc04#Function01
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function37
/LBWireFrameDoc04#Function01
/LBWireFrameDoc04#Function05
/LBWireFrameDoc04#LBWFDoc04Top

Liberty BASIC Programmer's Encyc

Function FF.LBWF.HideAxes()

If the programmer does not want the axes to appear the next time the FF.LBWF.DrawAllObjects()
function is called, she may use Function FF.LBWF.HideAxes(). This function requires no arguments.

Top of Page

Functions Which Create Objects

Version 0.6 of the LBWF Library provides functions for the creation of nine different objects. Below, I
will provide the documentation for each one.

Function FF.LBWF.CreateBox(BoxName$, xdim, zdim, boxheight, BoxColor$)

As the reader could guess, this function creates a box. Understand, however, that the data for the box is
merely created in memory. The box will not be plotted in the graphicbox until a function is called
which draws the object.

BoxName$ - All LBWF objects must be assigned names. Names are handled as strings. The
Library recommends that the programmer use object names without spaces.

xdim - The dimension of the box in the x-direction

zdim - The dimension of the box in the Z-direction

boxheight - The height of the box.

BoxColor$ - All objects must be given a color, passed to the function as a string. See the Liberty
BASIC help files for proper ways to designate colors.

So, where are boxes, and other objects, plotted? The default location of a box is centered on the y axis,
with the bottom of the box resting on the X Z plane. All objects are originally positioned similarly.
Elsewhere, I will identify the function that allows the programmer to move any objects she creates.

 page 9 / 30

/LBWireFrameDoc04#Function37
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function36

Liberty BASIC Programmer's Encyc

Top of Page

Function FF.LBWF.CreateCylinder(CylName$, radius, numSides, cylheight, CylColor$)

This function creates the data for a cylinder. The cylinder itself will not appear in the graphicbox until
a function is called with draws the object.

CylName$ - The name of the cylinder, sent to the function as a string.

radius - The radius of the cylinder

numSides - The number of sides that you want the cylinder to have. Not that in the example above,
the cylinder has 20 sides.

cylheight - The height of the cylinder.

CylColor$ - The color of the cylinder, sent to the function as a string.

Top of Page

Function FF.LBWF.CreatePyramid(pyrName$, xdim, zdim, pyrheight, pyrColor$)

This function creates the data for a pyramid. The base of the pyramid resides on the X Z plane, and the
axis of the pyramid is on the global Y axis. The pyramid itself will not appear in the graphicbox
until a function is called which draws the object.

pyrName$ - The name of the pyramid input as a string. The Library recommends that the
programmer use object names without spaces.

xdim - The dimension of the pyramid in the x-direction

zdim - The dimension of the pyramid in the Z-direction

 page 10 / 30

/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function36
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function36

Liberty BASIC Programmer's Encyc

pyrheight - The height of the pyramid.

pyrColor$ - The color of the pyramid, passed to the function as a string. See the Liberty BASIC
help files for proper ways to designate colors.

Top of Page

Function FF.LBWF.CreateCone(ConeName$, radius, numSides, coneheight, ConeColor$)

This function creates the data for a cone. The base of the cone will be located in the X Z plane, and the
axis of the cone is on the global Y axis. The cone itself will not appear in the graphicbox until a
function is called which draws the object.

ConeName$ - The name of the cone, sent to the function as a string.

radius - The radius of the cone.

numSides - The number of sides that you want the cone to have.

coneheight - The height of the cone.

>ConeColor$ - The color of the cone, sent to the function as a string.

Top of Page

Function FF.LBWF.CreatePolygon(PolyName$, radius, numSides, PolyColor$)

This function creates the data for a polygon. When created, the polygon will reside in the X Z plane,
and will be centered on the Y axis. The polygon itself will not appear in the graphicbox until a
function is called which draws the object.

PolyName$ - The name of the polygon, sent to the function as a string.

 page 11 / 30

/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function36
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function36

Liberty BASIC Programmer's Encyc

radius - The radius of the polygon.

numSides - The number of sides that you want the polygon to have. The numSides value should be
an integer.

PolyColor$ - The color of the cone, sent to the function as a string.

Top of Page

Function FF.LBWF.CreateGridObject(GridName$, NumUnitsXdirection,
NumUnitsZdirection, UnitSize, GridColor$)

This function creates a grid object. A grid object is a rectangular arrangment of intersecting lines. When
created, a grid object resides in the X Z plane, and is centered on the Y axis. A grid object is very
useful for showing "depth" in the graphicbox when objects are plotted.

The grid itself will not appear in the graphicbox until a function is called which draws the object.

GridName$ - The name of the grid, sent to the function as a string.

NumUnitsXdirection - The number of grid squares that the grid will have in the x-direction.

NumUnitsZdirection - The number of grid squares that the grid will have in the x-direction.

UnitSize - The size of one side of a grid square.

GridColor$ - The color of the cone, sent to the function as a string.

Top of Page

Function FF.LBWF.CreateDome(DomeName$, radius, numSides, DomeColor$)

This function creates a dome, which is the top half of a sphere. The base of the dome resides in the X Z
plane, and the dome is centered on the Y axis. The dome itself will not appear in the graphicbox
until a function is called which draws the object.

 page 12 / 30

/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function36
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function36

Liberty BASIC Programmer's Encyc

DomeName$ - The name of the dome, sent to the function as a string.

radius - The radius of the dome.

numSides - The number of sides that you want the dome to have.

DomeColor$ - The color of the dome, sent to the function as a string..

Top of Page

Function FF.LBWF.CreateLine(LineName$, x1, y1, z1, x2, y2, z2, LineColor$)

This function creates a line in space. A series of lines can be created within a counted loop in order to
make stars and other interesting geometrical shapes.

Newly created lines will not appear in the graphicbox until a function is called which draws the object.

LineName$ - The name of the line, sent to the function as a string.

x1, y1, z1 - The x-, y- and z-coordinates of the starting point of the line.

x2, y2, z2 - The x-, y- and z-coordinates of the end point of the line.

LineColor$ - The color of the line, sent to the function as a string..

Top of Page

Function FF.LBWF.CreateCyl2(Cyl2Name$, radiusBottum, radiusTop, numSides,
cyl2height, Cyl2Color$)

A cyl2 is a cylinder like object whose bottom surface and top surface can have different radii. For
example, a cyl2 with a bottom radius of 20 and a top radius of 10 would look like a cone with it's pointed
top removed.

 page 13 / 30

/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function36
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function13

Liberty BASIC Programmer's Encyc

The cyl2 itself will not appear in the graphicbox until a function is called which draws the object.

Cyl2Name$ - The name of the cyl2, sent to the function as a string.

radiusBottum - The radius of the bottom surface of the cyl2.

radiusTop - The radius of the top surface of the cyl2.

numSides - The number of sides of the cyl2.

cyl2height - The height of the cyl2.

Cyl2Color$ - The color of the line, sent to the function as a string..

Top of Page

Function FF.LBWF.CreateComplexObject(ObjectName$, FileName$, ObjectColor$)

A complex object is a 3D wire frame object that must be created by assembling node and line data in an
external file. The CreateComplexObject function allows the programmer to create objects beyond the
standard 3D wire frame objects that come programmed into 1.0's functions.

ObjectName$ - The name of the complex object, sent to the function as a string.

FileName$ - The name of the complex object data file in which the node and line data for the
complex object resides.

ObjectColor$ - The color of the complex object, sent to the function as a string.

The format of the node and line data in the complex object datafile must abide by a few simple syntactical
rules. This format is discussed in the article which introduces Wire 1.0.

Top of Page

 page 14 / 30

/LBWireFrameDoc04#Function36
/LBWireFrameDoc04#LBWFDoc04Top
/LBWFCh04
/LBWireFrameDoc04#LBWFDoc04Top

Liberty BASIC Programmer's Encyc

Functions Which Set the Properties of Objects

Function FF.LBWF.ObjectSetColor(ObjectName$, NewColor$)

This function allows the programmer to change the color that was assigned to an object when that object
was created with a create function.

ObjectName$ - The name of the object whose color you want to change.

NewColor$ - The new color of the object, sent to the function as a string..

Notice that the programmer can also retrieve the current color of an object by calling the
FF.LBWF.RequestObjectColor$() function.

Top of Page

Function FF.LBWF.ObjectSetLineThickness(ObjectName$, LineThickness)

When an object is created, the Library will give that object's lines a default thickness of 1 pixel. The
FF.LBWF.ObjectSetLineThickness() function allows the programmer to change the line thickness of
the object named.

ObjectName$ - The name of the object whose line thickness you want to change.

LineThickness - The new line thickness of the object.

The programmer can also retrieve an object's current line thickness by calling the
FF.LBWF.RequestObjectLineThickness() function.

Top of Page

 page 15 / 30

/LBWireFrameDoc04#CreateFunction
/LBWireFrameDoc04#Function42
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function43
/LBWireFrameDoc04#LBWFDoc04Top

Liberty BASIC Programmer's Encyc

Function FF.LBWF.HideObject(ObjectName$)

ObjectName$ - The name of the object to be hidden. This must be the name used when the object
was created.

When this function is called, the object is not hidden instantly. Rather, the function sets the visibility
property of the object to "hidden". Then, the object will not be drawn the next time the
FF.LBWF.DrawAllObjects() function is called.

Note also that the visibility property or visible state of any object can be retrieved at any time by calling the
FF.LBWF.RequestObjectVisibleState() function.

Top of Page

Function FF.LBWF.ShowObject(ObjectName$)

ObjectName$ - The name of the object to be shown. This must be the name used when the object
was created.

When this function is called, the object is not shown instantly. Rather, the function sets the visibility
property of the object to "visible". Then, the object will be drawn the next time the
FF.LBWF.DrawAllObjects() function is called.

Note also that the visibility property or visible state of any object can be retrieved at any time by calling the
FF.LBWF.RequestObjectVisibleState() function.

Top of Page

Function FF.LBWF.ObjectAssignCustomType(ObjectName$, CustomType$)

When objects are created, they are given a "type" during creation. The nine default types are box, cylinder,
pyramid, cone, grid, polygon, dome, line and cyl2. These types become properties of the object, and the
programmer can query the object type using the request function, FF.LBWF.RequestObjectType$().

But the programmer can also assign an object a custom type. A custom type is a name selected by the user
to help organize objects into groups or collections. Types are useful because the LBWF Library allows the

 page 16 / 30

/LBWireFrameDoc04#Function37
/LBWireFrameDoc04#Function46
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function37
/LBWireFrameDoc04#Function46
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function44

Liberty BASIC Programmer's Encyc

programmer to operate on objects based on their type. For instance, the programmer can hide, show, draw
or translate objects based on their type.

ObjectName$ - The name of the object to be assigned a custom type. This must be the name used
when the object was created.

CustomType$ - The custom type of the object, passed to the function as a string.

Here are a few things to note about custom types:

An object's custom type will replace the object's default type. However, the programmer can
reassign the object it's default type by using the FF.LBWF.ObjectAssignCustomType() function
again.

The LBWF Library will not prevent the programmer from assigning an object a custom type that is
exactly the same as one of the default types. For instance, if the programmer has created a cylinder
object, the library will not interfere if the programmer wants to give that object the type, box.

Neither an object's default type or custom type negates the object's unique identity indicated by its
name. In other words, the programmer can still operate on all objects individually inspite of
whatever default types or custom types they have.

Top of Page

Function FF.LBWF.HideObjectsOfType(ObjectType$)

This function will hide all objects of the type specified. Note that the objects will not be instantly hidden.
Rather, the objects will merely have their visibility property set to "hidden". Then, the next time a
FF.LBWF.DrawAllObjects() function is called, the objects will not be drawn.

ObjectType$ - The type identifying the objects that the programmer wants to hide.

The object type passed as a parameter can either be a default type or a custom type.

Note also that the visibility property or visible state of any object can be retrieved at any time by calling the
FF.LBWF.RequestObjectVisibleState() function.

 page 17 / 30

/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function37
/LBWireFrameDoc04#Function25
/LBWireFrameDoc04#Function46

Liberty BASIC Programmer's Encyc

Top of Page

Function FF.LBWF.ShowObjectsOfType(ObjectType$)

This function will show all objects of the type specified. Note that the objects will not be instantly shown.
Rather, the objects will merely have their visibility property set to "show". Then, the next time a
FF.LBWF.DrawAllObjects() function is called, the objects will be drawn.

ObjectType$ - The type identifying the objects that the programmer wants to show.

The object type passed as a parameter can either be a default type or a custom type.

Note also that the visibility property or visible state of any object can be retrieved at any time by calling the
FF.LBWF.RequestObjectVisibleState() function.

Top of Page

Function FF.LBWF.HideAllObjects()

This function sets the visibility property of all objects currently in inventory to "hidden". Then, the next
time a FF.LBWF.DrawAllObjects() function is called, all objects in inventory will be hidden.

The FF.LBWF.HideAllObjects() function requires no arguments.

Note also that the visibility property or visible state of any object can be retrieved at any time by calling the
FF.LBWF.RequestObjectVisibleState() function.

Top of Page

 page 18 / 30

/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function37
/LBWireFrameDoc04#Function25
/LBWireFrameDoc04#Function46
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function37
/LBWireFrameDoc04#Function46
/LBWireFrameDoc04#LBWFDoc04Top

Liberty BASIC Programmer's Encyc

Function FF.LBWF.ShowAllObjects()

This function sets the visibility property of all objects currently in inventory to "visible". Then, the next
time a FF.LBWF.DrawAllObjects() function is called, all objects in inventory will be drawn.

The FF.LBWF.ShowAllObjects() function requires no arguments.

Note also that the visibility property or visible state of any object can be retrieved at any time by calling the
FF.LBWF.RequestObjectVisibleState() function.

Top of Page

Functions Which Translate or Rotate Objects

Function FF.LBWF.TranslateObject(ObjectName$, transX, transY, transZ)

To translate an object means to move the object without rotating it. LBWF provides a single translation
function to move an object in any or all of the x, y, or z axes.

ObjectName$ - The name of the object to be translated. This must be the name used when the
object was created.

transX, transY, transZ - The number of units to move the object in the x-, y- and z-directions.

Note that this function will always move the object relative to the object's current position. Note also that
the object will not appear to move until a subsequent draw command is issued.

Top of Page

Function FF.LBWF.MoveObjectAbsolute(ObjectName$, pX, pY, pZ)

This function translates the named object such that the object's geometric center now resides at the point
(pX,pY,pZ). In other words, the function moves the object to an absolute point or destination, rather than
moving the object relative to the object's current position.

 page 19 / 30

/LBWireFrameDoc04#Function37
/LBWireFrameDoc04#Function46
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#LBWFDoc04Top

Liberty BASIC Programmer's Encyc

ObjectName$ - The name of the object to be moved. This must be the name used when the object
was created.

pX, pY, pZ - The x-, y- and z-coordinates of the destination point to where the object will be
moved.

There might be occasions when the programmer wants to move the object to a specific X and Z location,
but wants the y-coordinate of the object to remain the same. (That is, the programmer wants to move the
object laterally, but doesn't want to "elevate" the object.) When that is the case, the programmer should
request the object's geometric center using the FF.LBWF.RequestObjectGeometricCenter$() function.
When the result is returned from the function, the programmer needs to parse the result for the y-
coordinate of the object's geometric center. This value, then, is passed as pY in the
FF.LBWF.MoveObjectAbsolute() function. That way, the object moves in the x and z directions, but its
y coordinate does not change.

Top of Page

Function FF.LBWF.RotateObjectAboutY(ObjectName$, YRotationInDegrees)

An object's local y axis runs through the geometric center of the object and is parallel to the
global y axis. The FF.LBWF.RotateObjectAboutY() function will rotate the object about its
local y axis.

ObjectName$ - The name of the object to be moved. This must be the name used when the object
was created.

YRotationInDegrees - The angle, in degrees, through which the object should be rotated.

Objects also have local x and z axes. These axes always remain "attached" to the geometric center
of the object, and will always be parallel to their corresponding global axes even after a rotation has
occured. For instance, if the programmer rotates an object 45 degrees about the object's local y
axis, the same object's local x and z axes do not rotate along with the object. All local axes
stay parallel to the global axes.

The object specified will appear in its new rotated position the next time a FF.LBWF.DrawObject() or a
FF.LBWF.DrawAllObjects() function is called.

 page 20 / 30

/LBWireFrameDoc04#Function41
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function36
/LBWireFrameDoc04#Function37

Liberty BASIC Programmer's Encyc

Top of Page

Function FF.LBWF.RotateObjectAboutX(ObjectName$, XRotationInDegrees)

This function rotates an object about the object's local x axis. For a discussion of local and
global axes see the FF.LBWF.RotateObjectAboutY() function.

ObjectName$ - The name of the object to be moved. This must be the name used when the object
was created.

XRotationInDegrees - The angle, in degrees, through which the object should be rotated.

The object specified will appear in its new rotated position the next time a FF.LBWF.DrawObject() or a
FF.LBWF.DrawAllObjects() function is called.

Top of Page

Function FF.LBWF.RotateObjectAboutZ(ObjectName$, ZRotationInDegrees)

This function rotates an object about the object's local z axis. For a discussion of local and
global axes see the FF.LBWF.RotateObjectAboutY() function.

ObjectName$ - The name of the object to be moved. This must be the name used when the object was
created.

ZRotationInDegrees - The angle, in degrees, through which the object should be rotated.

The object specified will appear in its new rotated position the next time a FF.LBWF.DrawObject() or a
FF.LBWF.DrawAllObjects() function is called.

Top of Page

 page 21 / 30

/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function32
/LBWireFrameDoc04#Function36
/LBWireFrameDoc04#Function37
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function32
/LBWireFrameDoc04#Function36
/LBWireFrameDoc04#Function37
/LBWireFrameDoc04#LBWFDoc04Top

Liberty BASIC Programmer's Encyc

Function FF.LBWF.TranslateObjectsOfType(ObjectType$, transX, transY, transZ)

This function will translate all objects of the type specified. It will translate each object the distance
specified (transX, transY, transZ) relative to the current position of each object.

ObjectType$ - The type of the objects that the programmer wishes to translate. This can either be a
default type or a custom type.

transX - The distance that the collection will be translated in the x-direction.

transY - The distance that the collection will be translated in the y-direction.

transZ - The distance that the collection will be translated in the z-direction.

The objects will appear in their new position the next time a FF.LBWF.DrawObject(),
FF.LBWF.DrawAllObjects(), or FF.LBWF.DrawObjectsOfType() function is called.

Top of Page

Functions Which Draw One or More Objects

Function FF.LBWF.DrawObject(ObjectName$)

ObjectName$ - The name of the object to be drawn. This must be the name used when the object
was created.

The DrawObject function draws the object identified in the argument. When the function is called, the
object will be drawn regardless of whether its visibility property was set to "hidden" by the
FF.LBWF.HideObject(ObjectName$) function.

Top of Page

 page 22 / 30

/LBWireFrameDoc04#Function36
/LBWireFrameDoc04#Function37
/LBWireFrameDoc04#Function38
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function23
/LBWireFrameDoc04#LBWFDoc04Top

Liberty BASIC Programmer's Encyc

Function FF.LBWF.DrawAllObjects()

This function requires no arguments. The function will draw all objects, except for those whose visibility
property is set to "hidden" by the FF.LBWF.HideObject() function.

Top of Page

Function FF.LBWF.DrawObjectsOfType(ObjectType$)

This function will draw all objects of the type specified. The objects will be drawn regardless of whether
their visibility property has been set to "hidden".

ObjectType$ - The type identifier of the object collection to be drawn. This can be either a default
type or a custom type.

Top of Page

Functions Which Return Information About Objects or the LBWF System
("Request" Functions)

Function FF.LBWF.RequestLibraryResources$()

In the LBWF Library, node data, line data and object data are stored in arrays. Therefore, the amount of
data that you can store is not unlimited. The FF.LBWF.RequestLibraryResources$() function provides
information about the total capacity of the library before any resources are used.

Specifically, in version 0.6 of the Library the function returns the following string: "4000 4000 500". This
means that the Library routines have the capacity to store data for 4000 nodes, 4000 lines and 500 objects
before any objects are created. The programmer can extract the individual pieces of data from this return
string by using Liberty BASIC's native WORD$() and VAL() functions.

The FF.LBWF.RequestLibraryResources$() function requires no arguments.

Top of Page

 page 23 / 30

/LBWireFrameDoc04#Function23
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#LBWFDoc04Top
http://www.libertybasic.com
/LBWireFrameDoc04#LBWFDoc04Top

Liberty BASIC Programmer's Encyc

Function FF.LBWF.RequestRemainingResources$()

This function is similar to FF.LBWF.RequestLibraryResources$() except that it returns a string containing
the remaining resources while the programmer or user is in the process of creating objects. For instance, if
the function returned the following string -- "3120 3350 420" -- that would mean that the programmer has
enough storage space for 3120 nodes, 3350 lines, and 420 objects.

The FF.LBWF.RequestRemainingResources$() function requires no arguments.

Top of Page

Function FF.LBWF.RequestObjectGeometricCenter$(ObjectName$)

This function will return the x, y and z coordinates of the geometric center of the object named.
The result is returned as a string. In the string, the three numbers are separated by spaces, allowing the
programmer to parse the return string to obtain individual coordinate numbers. For example, the function
may return "65.702 8.666715 106.815547". This would mean the center of the object named is at

x=65.702, y=8.666715, z=106.815547

ObjectName$ - The name of the object of which geometric center coordinates are desired.

Note that this function was also mentioned in the description of the FF.LBWF.MoveObjectAbsolute()
function.

Top of Page

Function FF.LBWF.RequestObjectColor$(ObjectName$)

This function returns the color of the object identified as an argument.

 page 24 / 30

/LBWireFrameDoc04#Function39
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function31
/LBWireFrameDoc04#Function31
/LBWireFrameDoc04#LBWFDoc04Top

Liberty BASIC Programmer's Encyc

ObjectName$ - The name of the object of which the color is desired.

Remember that the color of an object is set when the object is created, and the object's color can be
changed with the FF.LBWF.ObjectSetColor() function.

Top of Page

Function FF.LBWF.RequestObjectLineThickness(ObjectName$)

This function returns the line thickness of the object identified as an argument.

ObjectName$ - The name of the object of which the line thickness is desired.

Note also that the programmer can set the line thickness with the FF.LBWF.ObjectSetLineThickness()
function.

Top of Page

Function FF.LBWF.RequestObjectType$(ObjectName$)

This function returns the type of the object identified as an argument. The type can either be a default type
or a custom type. Custom types are set with the FF.LBWF.ObjectAssignCustomType() function.

ObjectName$ - The name of the object of which the type is desired.

Top of Page

 page 25 / 30

/LBWireFrameDoc04#CreateFunction
/LBWireFrameDoc04#Function21
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function22
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#Function25
/LBWireFrameDoc04#LBWFDoc04Top

Liberty BASIC Programmer's Encyc

Function FF.LBWF.RequestObjectExtents$(ObjectName$)

This function essentially returns the x, y, and z coordinates of the "bounding box" of the object
named in the function. These six values represent the minimum and maximum X, Y and Z values of the
area that the object occupies in space. This six values are assembled together in a string which can be
parsed by the programmer.

As an example, the function might return the value, "25.2 35.7 86.5 125.9 -55.621 12.448". The
programmer would interpret these to mean that the object is bounded

in the x- dimension by xmin = 25.2 and xmax = 35.7
in the y- dimension by ymin = 86.5 and ymax = 125.9
and in the z- dimension by zmin = -55.621 and zmax=12.448

ObjectName$ - The name of the object whose extents is desired.

Top of Page

Function FF.LBWF.RequestObjectVisibleState(ObjectName$)

This function returns the visibility property of the object as set by any of the functions which allow hiding
or showing of objects.

ObjectName$ - The name of the object whose visibility state is desired.

The quantity returned by the function is an integer. If the visibility property of the object is set to "visible",
then this function will return 1. Otherwise, if the visibility property of the object is set to "hidden", then
this function will return 0.

Top of Page

Function FF.LBWF.RequestObjectNameFromXY$(ScreenX, ScreenY, pixelLimit)

 page 26 / 30

/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#SetProperties
/LBWireFrameDoc04#SetProperties
/LBWireFrameDoc04#LBWFDoc04Top

Liberty BASIC Programmer's Encyc

This function returns the name of that object which has a line which passes through (or near) the
graphicbox pixel having coordinates ScreenX and ScreenY. This function requires an extensive
explanation, to be provided after the identification of arguments below.

ScreenX - The x-coordinate of the graphicbox pixel through which the object's line passes (or
passes nearby).

ScreenY - The y-coordinate of the graphicbox pixel through which the object's line passes (or
passes nearby).

pixelLimit - The allowable offset distance, in pixels, between the graphicbox point defined by
(ScreenX, ScreenY) and the object's line, which will still register a "hit" on an object.

The purpose of this function is to give programmers and users a way to select a 3D object by clicking on
one of the object's lines in the graphicbox in which the object appears. This function returns the name of
the object which has a line passing through, or near, the graphicbox point at (ScreenX, ScreenY).
Once the programmer is in possession of the object's name, then she can manipulate the object using any
of Wire's other functions.

How does the function provide results?

If the programmer passes to the function a pair of coordinates, ScreenX and ScreenY, that is within
the pixelLimit distance of any line of an object, then the function returns that object's name.
Otherwise, if the graphicbox point sent to the function is more than pixelLimit distance from any line
of any object, then the function returns the string, "null00", meaning that no object has been selected.
Because the string "null00" is used to communicate that no object is selected by the function, "null00"
should be considered a reserved word by Wire programmers and users.

Programmers must understand that ScreenX and ScreenY are graphicbox coordinates, not space
coordinates. Even though objects made with Wire are fundamentally defined as space objects, they are
rendered into a Liberty BASIC graphicbox. Therefore, the vertices (or nodes) of a 3D object will have
graphicbox coordinates in addition to spatial coordinates. For each and every 3D object, the Wire
engine knows fully the graphicbox coordinates of that object's nodes.

How does the programmer select screen coordinates to pass to the function?

Programmers should remember that Liberty BASIC always knows the location of the pointer within a
Liberty BASIC graphicbox. Liberty BASIC uses the variables MouseX and MouseY to hold the
graphicbox coordinates of the pointer. The values stored in MouseX and MouseY change instantly as
the pointer is moved around within the graphicbox. As the programmer or user moves the pointer over
a line of a Wire object, the programmer can capture the coordinates of the pointer by clicking on the line,
and reading the coordinates by trapping a mouse event, such as "when leftButtonUp". (See the discussion
of graphicbox commands in Liberty BASIC's help file for more information.) Once these pointer
coordinates are captured, the programmer can send them to the

 page 27 / 30

http://www.libertybasic.com
http://www.libertybasic.com
http://www.libertybasic.com
http://www.libertybasic.com
http://www.libertybasic.com

Liberty BASIC Programmer's Encyc

FF.LBWF.RequestObjectNameFromXY$() function.

What is the purpose of the pixelLimit argument?

Wire understands that it would be inconvenient and unproductive to require that a programmer or user
always click exactly on top of a line if she wants to select an object. The pixelLimit argument is
provided to give the programmer a range distance adjacent to a line, and still have the function indicate a
"hit" on an object. That is, if the pixelLimit is set to three, then the user only has to designate a
graphicbox point, or click on a graphicbox point, that is only three pixels from the line of an object
in order to register a "hit" on that object.

 What else should the programmer know about FF.LBWF.RequestObjectNameFromXY$()?

Because lines of different objects will often overlap each other, there can be many graphicbox pixels that
are within pixelLimit of more than one object. The FF.LBWF.RequestObjectNameFromXY$() will
always return the name of the first object that is within pixelLimit of the graphicbox coordinates
sent to the function. The order of objects is determined by the order in which they are created by the
programmer or user.

Because multiple objects can appear within pixelLimit of the same graphicbox point, the
programmer and user are advised to click on areas of lines that tend not to be too close to the lines of other
objects. This will help the user avoid selecting the wrong object.

Top of Page

Miscellaneous Functions

Function FF.LBWF.ZeroAllData()

This function erases all node, line and object data, and essentially resets the entire LBWF system back to
its state at startup. After calling this function, the number of nodes is zero, the number of lines is zero, and
the number of objects is zero.

This function requires no arguments.

Top of Page

 page 28 / 30

/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#LBWFDoc04Top

Liberty BASIC Programmer's Encyc

Function FF.LBWF.PauseMilliseconds(DelayMS)

This function will cause a delay in program execution by continually querying the system clock until the
designated number of milliseconds has passed. Pause functions are useful during animation to prevent the
screen from being redrawn too rapidly.

DelayMS - The time length of the pause, given in milliseconds.

Liberty BASIC user Welopez pointed out that this particular pause function seems to consume all system
resources. For that reason, an alternate pause function is provided which uses Liberty BASIC's native
TIMER command. For the time being, both pause functions will remain in the LBWF Library.

Top of Page

Function FF.LBWF.PauseUsingTimer(DelayMS)

This function creates a pause in system execution by use of Liberty BASIC's native TIMER command. It
may be used as an alternative to the FF.LBWF.PauseMilliseconds(DelayMS) function discussed above.

DelayMS - The time length of the pause, given in milliseconds.

Top of Page

Function FF.LBWF.ATAN2(x, y)

This function returns the arc whose tangent is (y/x). The result is returned in radians. The result will
always be in the range of 0 to (2 x pi).

x - The x-length of the right triangle whose angle is desired.

 page 29 / 30

http://www.libertybasic.com
/LBWireFrameDoc04#Function49
http://www.libertybasic.com
/LBWireFrameDoc04#LBWFDoc04Top
http://www.libertybasic.com
/LBWireFrameDoc04#Function48
/LBWireFrameDoc04#LBWFDoc04Top

Liberty BASIC Programmer's Encyc

y - The y-length of the right triangle whose angle is desired.

The programmer may never have a reason to use the FF.LBWF.ATAN2() function. However, LBWF
Library itself requires ATAN2 in order to successfully perform the object rotations called for by
FF.LBWF.RotateObjectAboutY(), FF.LBWF.RotateObjectAboutX(), and
FF.LBWF.RotateObjectAboutZ().

Top of Page

Function FF.LBWF.LBWFVersion$()

This function will return the current version of the LBWF Library. It requires no arguments. As of the
publication of this document, the current version of the Library is 0.6.

Top of Page

Function FF.LBWF.About()

This function displays a Liberty BASIC NOTICE box which contains the LBWF version number and an
attribution of library authorship to Tom Nally. The function requires no arguments.

Top of Page

Tom Nally
Steelweaver52@aol.com

Note: This linked article accompanies Chapter 4: Wire 1.0 Released (Making Complex Objects With Wire),
which originally appeared in the Liberty BASIC Newsletter, Issue #137. It is reprinted here with the
permission of the author. -

 JanetTerra

Powered by TCPDF (www.tcpdf.org)

 page 30 / 30

/LBWireFrameDoc04#Function32
/LBWireFrameDoc04#Function33
/LBWireFrameDoc04#Function34
/LBWireFrameDoc04#LBWFDoc04Top
/LBWireFrameDoc04#LBWFDoc04Top
http://www.libertybasic.com
/LBWireFrameDoc04#LBWFDoc04Top
mailto:Steelweaver52@aol.com
/LBWFCh04
https://www.wikispaces.com/user/view/JanetTerra
https://www.wikispaces.com/user/view/JanetTerra
http://www.tcpdf.org

	LBWireFrameDoc04

