Liberty BASIC Programmer's Encyc

MDI Client to Scroll Controls
Why Scroll? | MDI is the Key | Creating an MDI Client | Creating a Child Window | Making it Work |

Scrolling Demo
For an eBook or printed book on using the API with Liberty BASIC, see:

APIs for Liberty BASIC

Why Scroll?

Sometimes we simply don't have enough room on a window for all of the controls needed by a program.
We can get around this in several ways. One way is to move controls on and off the window as needed with
the LOCATE statement. Another way is to make the controls do double duty. When one set of conditions
is in effect, button one might be the "Okay" button, but when another set of conditions is in effect, it might
be the "Save" button. This can get a little complicated! We can also break the program into logical parts
and use separate windows to manage different tasks.

Here is a new idea. We can scroll the controls on the window. If we allow scrolling, then more controls, or
larger controls may fit on a single window.

* Scrolling Big Window |2 |[EX)

Click Me!

MDI is the Key

We could go about the scrolling in several ways, but using an MDI client is probably the easiest way of all.
An MDI application has an MDI client that acts as parent to any child windows it contains. When one of
the child windows is larger than the workspace, the MDI window automatically adds scrollbars to allow
access to the entire child window.

Creating an MDI Client

As with other API-created controls, we create the MDI client with CreateWindowExA.. It will itself be a
child of our main program window, and it won't really be visible until it displays scrollbars. We need the
handle of our program window, and the instance handle, which we retrieve with GetWindowLongA. We
also fill arguments for the location and dimensions. See the sample program below, where all arguments
for CreateWindowEXA are documented.

page 1/4

http://alycesrestaurant.com/apilb/index.htm

Liberty BASIC Programmer's Encyc

Creating a Child Window

We'll need a child window to hold all of our controls. We don't want the user to move it around, so we'll
create it with no titlebar using the window_popup style. We can make this window as large as we need to
hold the controls, and of course we need to include commands to create these controls before the
command to open the popup window. We'll locate the popup window so that it fills the client area of our
main program window. Once this popup window is created, we'll make it a child of the MDI client with
the SetParent function.

Making it Work

We need to check for the resize event of the window and resize the MDI client so that it fills the new
workspace whenever the window changes size. If the user has scrolled the MDI window and then resizes
the program window, the child popup will not be in the correct locatoin, so we'll also need to relocate our
popup child window. We need to force a resize event when the window first opens so that the MDI
scrollbars will display. We do all of these sizing and locating chores with MoveWindow.

The demo below only has a single button on the far right side of the popup child window. Your own
program would probably have many controls on this window.

Scrolling Demo

"MDI wi ndow to all ow
"scrolling of |arge w ndow
‘area

" based on work

"By Mtchell Kotler

nomai NwW n

W ndowW dt h=350 : W ndowHei ght =350
chi | dW de=1400 : chil dH gh=1000 'child w ndow di ns

menu #main, "File", "E&it",[quit]

open "Scrolling Big Wndow' for wi ndow as #nain
print #main, "trapclose [quit]"

print #main, "resizehandler [resize]"

page2/4

Liberty BASIC Programmer's Encyc

hMai n=hwnd(#mai n) ' mai n wi ndow handl e

cal I dl | #user32, "GetWndowLongA",

hMai n as ulLong, _ "handl e of w ndow
_GW HI NSTANCE as long, 'flag for instance handl e
hl nst ance as uLONG "returns instance handl e of w ndow

dwSt yl e=_ WS_CLI PCHI LDREN OR _WS_CHI LD OR _WS_VI SI BLE OR _
_WS_BORDER or _WS VSCROLL OR WS _HSCROLL

‘create an MDI Cient Control
cal I dl'I #user32, "CreateW ndoweExA", _

0 as long, _ "extended class style

"MDI CLI ENT" as ptr, _ ' cl ass nane

""as ptr, _ "title or string

dwsStyl e as | ong, _ "W ndow style

2 as long, _ "X org

2 as long, _ 'y org

339 as long, _ "w dt h

302 as long, _ " hei ght

hMai n as ul ong, _ ' parent w ndow

0 as ulong, _ "handle to menu = 0 for class nenu
hl nst ance as ul ong, _ "instance handl e of parent w ndow
"" as ptr, _ "al ways NULL

hvDI as ul ong "returns handle of MD dient

W ndoww dt h=chi | dW de: W ndowHei ght =chi | dH gh

statictext #child, "Scroll Me A LOT!", 10, 10, 200, 24

button #child.b, "dick Me!", [dodick], UL, 1200, 100, 100, 24
open "" for w ndow _popup as #child

print #child, "trapclose [quit]"

hChi | d=hwnd(#chi | d) 'handl e of popup w ndow

cal ldl |l #user32, "SetParent",
hChild as ul ong, _ "make popup the child
hvDI as ul ong, _ "make MDI the parent
result as |ong

'use MoveW ndow to force wi ndow resize

"so scrollbars wll show

Cal | DLL #user 32, "MyveW ndow', hMain As ulLong, _
11 As Long, 11 As Long, _
333 As Long, 333 As Long, _
1 As long, r As |long

page 3/4

Liberty BASIC Programmer's Encyc

wai t

[resize]
newW de=W ndowW dt h- 4
newH gh=W ndowHei ght - 4

r et =MoveW ndow(hMDI , 2, 2, newW de, newHi gh)

ret =MoveW ndow(hChi | d, 0, O, chi | dW de, chi | dHi gh)

wai t

[dod i ck]

notice "Thanks for clicking nme!"

wai t

[quit] close #child : close #main

end

Function MoveW ndow(hWad, X, y, wi de, hi gh)
Cal | DLL #user 32, "MyveW ndow', _

hwhd As ulLong, _
x As Long, y As Long, _
wi de As Long, _
hi gh As Long, _
1 As long, _
MoveW ndow As | ong
end function

handl e

X,y pos

wi dt h

hei ght
repaint flag

Why Scroll? | MDI is the Key | Creating an MDI Client | Creating a Child Window | Making it Work |

Scrolling Demo

page 4 /4

http://www.tcpdf.org

	MDIScroll

