Liberty BASIC Programmer's Encyc

Sharing Data with Memory Mapped Files

© 2003, Dennis McKinney -
DennisMcK

Sharing Data with Memory Mapped Files | Sharing data between applications | File Mapping Overview |
Mutex Overview | Program Design | Additional Info | Documentation | Demo

Sharing data between applications

Communicating between Liberty BASIC applications is a subject that comes up every so often in the
different LB groups and some clever work-arounds have been tried with varying degrees of success. A
recent post prompted some more research on the subject and led to this article. It turns out that the means
to accomplish this in Liberty BASIC have been available for years. It's called File Mapping. As the name
suggests this method uses a file that contains the data to be shared.Others have used files to pass
information back and forth before but this is different in two major ways. One, the file doesn't have to
exist on the hard drive, it can exist only in memory. Two, the file data can be accessed with a pointer,
allowing very fast reads.

One rule you have to follow is to synchronize access to the filememory. In other words, don't allow more
than one application to read or write to the file at the same time. This access control can accomplished by
using something called a Mutex object, whose "name comes from the fact that it is useful in coordinating
mutually exclusive access to a shared resource."

File Mapping Overview

A mapped file is created by calling CreateFileMappingA(). The file must have a unique name just like any
other file path and the name of the file is used when any application wants to access it.
CreateFileMappingA either creates the file-mapping object and returns a handle to it, or if the mapped file
has already been created, returns a handle to the existing file-mapping object.

To get to the data in the file a call is made to MapViewOfFile() using the handle obtained from
CreateFileMappingA. MapViewOfFile creates a 'view' of the file in the program's address space and
returns a pointer to it.

The data in the view can then be copied into a structure and used. If your program changes any of the data,
it can be saved in the mapped file by copying the structure back into the file-view and calling
UnmapViewOfFile().

The mapped file handle must be be closed with a call to CloseHandle(). Failing to do this will cause a
memory leak as Windows will not remove the mapped file object from memory until all open handles to it
are closed.

page 1/8

https://www.wikispaces.com/user/view/DennisMcK
https://www.wikispaces.com/user/view/DennisMcK

Liberty BASIC Programmer's Encyc

Mutex Overview

A mutex object must have a unique name and that name is used when any application wants to use it. A
mutex object is created by calling CreateMutex() and a handle to the mutex is returned. If the mutex has
already been created, a handle to the mutex can be obtained by calling OpenMutex(). To use a mutex a
program can request ownership of the mutex object by calling WaitForSingleObject(). Only one program
may own the specified mutex at one time. If the mutex object is owned by another program, the
WaitForSingleObject function blocks the requesting program until the owning program releases the mutex
object or the function times out. An owning program releases a mutex by calling ReleaseMutex(). The
mutex handle must be be closed with a call to CloseHandle().

Program Design

When the program starts:

® Define the strings for the file-mapping and mutex names. These strings are limited to
_MAX_PATH number of characters and should be as unique as you can make them. The names
can contain any character except the backslash character (\). Using the names from the example
code for your program is not a good idea.

¢ Define one struct with an element for each variable to be shared.

¢ The string names and structure design must be identical in each program.

¢ Create the file-mapping object.

¢ Create or open the mutex object. Only open it if it already exists.

To read shared data:

Obtain ownership of the mutex.

® Map a view of the file-mapping object.
Copy the view into the struct.

Unmap the view.

Release the mutex.

To save shared data:

¢ Obtain ownership of the mutex.
® Map a view of the file-mapping object.
¢ Copy the struct into the view.

page 2/ 8

Liberty BASIC Programmer's Encyc

¢ Unmap the view.
¢ Release the mutex.

When the program ends:

® (Close the handle to the file-mapping object.
¢ (Close the handle to the mutex object.

Additional Info

The example code with this article shows how do each of these steps in detail. You should read the
documentation for File Mapping as the example code is simplified. There are limits to the size of the file-
mapping object and the mapped view does not have to be a view of the entire file. More than one view of
the file-mapping object may be created and used at the same time. Also, additional steps are required
when using a regular file that is stored on the hard drive. Other factors need to be considered when the
mapped-file exists on one computer and is accessed by programs on different computers in a network
environment.

Documentation

Hopefully this article has presented enough information to give you a good start toward building your own
data sharing programs. Additional information can be found in the Borland Win32 Programmer's
Reference (Win32.hlp) and at MSDN.

Dennis McKinney

September 2, 2003

Demo

Sharing data with other applications.
" Aut hor: Dennis MKinney. August 30, 2003.

Run several instances of this program and arrange the w ndows
so they are all visible. Cick the Change Data button on different
w ndows and observe the results.

nonmai Nw n

ERROR. ALREADY. EXI STS = 183

page 3/8

Liberty BASIC Programmer's Encyc

' The sanme mapped-file nane and nmutex nane nust be used in
" all progranms that will share data.

" Use any strings you like and try to nake them uni que.
MappedFi | eNane$ = "ny_fil e _mappi ng_obj ect"

Mut exNane$ = "my_file_access_control _nutex"

" Define a commobn data structure to hold the shared dat a.
" The structure's elenments will be the shared data vari abl es.
" NOTE WELL - You nust use type char[x] for strings and you nust
" allow one additional character for the termnating null or "O"
" character that Wndows appends to all strings.
struct Shared, _

numA AS LONG _

nunB AS LONG, _

strVar as char[255] 'String variable with up to 254 characters.

si zeof Shared = | en(Shared. struct)

g.flag =1 "Allows the data to be printed on the first pass.
g.caption$ = "Local string = NULL"

W ndowW dth = (Di spl ayW dt h/ 2)-20

W ndowHei ght = Di spl ayHei ght/ 2-50
Upper Lef t X=i nt ((Di spl ayW dt h- W ndowW dt h) / 2)
Upper Left Y=i nt ((Di spl ayHei ght - W ndowHei ght)/ 2)

teHei ght = (D spl ayHei ght/2)-120

texteditor #main.te, 5, 12, 210, teHeight

button #mai n. changeData, "Change Data", |
change. shared. data], UL, 217, 12, 75, 25

menu #main, "Edit", " ", [X]
open " " for w ndow as #main
#main, "trapclose [quit]"
hWwhd = hwnd(#nai n)

gosub [init.shared. data]
goto [get. shared. dat a]

[quit]
call dl'l #kernel 32, "Cl oseHandl e", hMutex as ulong, ret as |ong
" You nust close the fil e-mapping object or you wll
" cause a nenory leak. This call wll succeed even if other
" processes are still using the fil e-mapping object.
call dl'l #kernel 32, "C oseHandl e", hMappedFile as ulong, ret as

page 4 /8

Liberty BASIC Programmer's Encyc

| ong
cl ose #main

END

LI R R b S b b b I b b S b S S S S S R R S S R S I S R A S E S b S R S R R S

[init.shared. dat a]
" Calling CreateFil eMappingA with a file handle of -1
" creates a file-mappi ng obj ect backed by the operating-system
" paging file rather than by a naned file on the hard drive.
" The return is a handle to the fil e-mappi ng object.
" If the object existed before the function call, the return val ue
" is avalid handle to the existing fil e-mappi ng object.

cal I dl'l #kernel 32, "CreateFil eMappi ngA", -1 as long, 0 as |ong,
_PAGE_READVWRI TE as ul ong, 0 as ulong, sizeofShared as ul ong,
MappedFi | eNane$ as ptr, hMappedFile as ul ong

' See if the file-mappi ng object has already been created.
" If it has then GetLastError() will return ERROR ALREADY. EXI STS
LastError = CGetlLastError()

i f hMappedFile > 0 then
i f LastError = ERROR ALREADY. EXI STS t hen
' By design in this code, if the file-mppi ng object
" already exists then the nmutex object has already been
' created by a previous process. So open the nmutex object
" and get the handle to it for this process to use.
cal I dl'l #kernel 32, "OpenMit exA",
_MJUTEX_ALL_ACCESS as ul ong, _
0 as long, MutexNane$ as ptr, hMitex as ul ong
el se
" This is the first process so create the nutex object for
" fil e-mappi ng obj ect access control purposes.
cal I dl |l #kernel 32, "CreateMiutexA"', 0 as ulong, _
0 as long, MiutexNane$ as ptr, hMiutex as ul ong
end if
end if
return

[change. shar ed. dat a]
timer O
" Request ownership of the nmutex object and
" wait up to 30 seconds for the request to be granted.
" Choose your own waiting tine.
' Once ownership is granted to this process, no other

page 5/8

Liberty BASIC Programmer's Encyc

process can 'own' the nutex until this process
releases it with a call to Rel easeMut ex.
signal State = Wit For Si ngl eCbj ect (hMut ex, 30000)

sel ect case signal State
case _WAIT_OBJECT_0, _WAI T_ABANDONED
" k. W own the nutex. Now we can proceed.

"Cet a pointer to the shared fil e-mappi ng obj ect
cal I dl'l #kernel 32, "MapViewO File", hMappedFile as ul ong, _
_FILE_MAP_WRI TE as ulong, 0 as ulong, 0 as ul ong,
si zeof Shared as ul ong, BaseAddress as ul ong
" Copy the data fromthe fil e-mappi ng object into
' the struct 'Shared' .
cal I dl'l #kernel 32,"Rt| MoveMenory”, Shared as ptr,
BaseAddress as ul ong, sizeof Shared as ulong, ret as
voi d
' Change the data
Shar ed. numA. st ruct
Shar ed. nunB. struct

Shar ed. numA. struct + 1
Shared. nunB. struct + 1

=] +1
Shared. strVar.struct = "Test string " + str$(j*100)
g.caption$ = "Local string =" + str$(

Shared. strVar. struct)

' save the new data (struct Shared)
" in the file-mapping object.
cal I dl'l #kernel 32,"Rt| MoveMenory", BaseAddress as ul ong,
Shared as ptr, sizeof Shared as ulong, ret as void

" Unmap the current view

cal 1 dl | #kernel 32, "UnmapViewOFile",
BaseAddress as ul ong, _

ret as |ong

Rel ease ownership of the nutex so anot her process can use it
cal I dl'l #kernel 32, "Rel easeMutex", hMitex as ul ong,
ret as |ong

case _WAIT_TI MEQUT
" Anot her process is hogging the nutex ownership.
" Try again |ater

page 6/ 8

Liberty BASIC Programmer's Encyc

case el se
r = GetLastError()
errnsg$ = For mat Message$(r)
notice "Error on Wait for Mutex" + chr$(10) + errnmsg$

end sel ect

[get. shar ed. dat a]
tinmer O
signal State = Wit For Si ngl eCbj ect (hMut ex, 30000)

sel ect case signal State
case _WAIT_OBJECT_0O, _WAI T_ABANDONED

"Cet a pointer to the shared fil e-mappi ng obj ect

cal 1 dl | #kernel 32, "MapViewd File", hMappedFile as ul ong, _
_FILE_MAP_WRI TE as ulong, 0 as ulong, 0 as ul ong,
si zeof Shared as ul ong, BaseAddress as ul ong

" Copy the data fromthe fil e-mapping object into

' the struct 'Shared' .

cal 1 dl | #kernel 32,"Rt | MoveMenory", Shared as ptr,
BaseAddress as ul ong, sizeofShared as ulong, ret as

voi d
" Do sonething wwth the data
if g.flag <> Shared. numA. struct then
g.flag = Shared. numA. struct
#main.te, "l!cls"
#mai n.te, "Shared. numA. struct = "; Shared. numA. struct
#mai n.te, "Shared. nunB.struct = "; Shared. nunB. struct
#mai n. te,
"Shared. strVar.struct = "; Shared. strVar. struct
end if

cal I dl'l #user32, "SetW ndowText A", hWhd as | ong,
g.caption$ as ptr, ret as |long
" Unmap the current view
cal 1 dl | #kernel 32, "UnmapViewOFile",
BaseAddress as ul ong, _
ret as |ong

Rel ease ownership of the nutex so anot her process can use it

page 7/ 8

Liberty BASIC Programmer's Encyc

cal I dl'l #kernel 32, "Rel easeMutex", hMitex as ul ong,
ret as |ong

case _VWAIT_TI MEQUT
" Anot her process is hogging the nutex ownership.
" Try again |ater.

case el se
r = GetLastError()
errnsg$ = For mat Message$(r)
notice "Error on Wait for Mutex" + chr$(13) + errnsg$

end sel ect
ti mer 500, [get.shared. data]
wai t

LI Sk S b Sk S b S b Sk R Ik b b S bk b b S b S Sk bk S bk b b S bk S b i b S R S AR Sk b b b b b A b b S b b 4

function Wit ForSi ngl eCbj ect (hHandl e, dwM | | i seconds)
cal I dl'l #kernel 32, "WitForSinglelject”, hHandl e as ul ong, _
dwM | | i seconds as ul ong, Wit For Singl eCbject as ul ong
end function

function GetLastError()
calldl'l #kernel 32, "GetLastError", CetLastError as ul ong
end function

functi on For mat Message$(nsgl D)
str$ = space$(256)
cal I dl'l #kernel 32, "Fornat MessageA",
_FORMVAT_MESSAGE_FROM _SYSTEM as ul ong,
0 as ulong, nsglD as ulong, 0 as ulong, str$ as ptr,
256 as ulong, 0 as ulong, r as ulong
For mat Message$ = trin(str$)
end function

Sharing Data with Memory Mapped Files | Sharing data between applications | File Mapping Overview |
Mutex Overview | Program Design | Additional Info | Documentation | Demo

page 8/ 8

http://www.tcpdf.org

	MemoryMappedFiles

