Liberty BASIC Programmer's Encyc

Midi Mapper for Sound Effects

Alyce
APIs for Liberty BASIC
copyright 2011 Alyce Watson, all rights reserved.
Midi Mapper for Sound Effects | The Midi Mapper | midiOutOpen | Bytes and Words | Setting Midi
Volume | midiOutShortMsg | Selecting a Voice | Playing a Note | Stop All Notes from Sounding | Close the
Midi Device | Demo | List of Voices

The Midi Mapper

You can play midi notes directly from the midi mapper without the need for files on disk. You can play
midi music, but you can also play sound effects. There are several midi voices that produce sound effects
like a gunshot, telephone ring, or bird tweet.

midiOutOpen

You must first open the midi device with midiOutOpen. The first argument is the address of the handle to
the midi device. This must be passed by reference so that the function can assign the handle to this
variable. It is not possible to pass a numeric variable by reference into an API call in Liberty BASIC. It can
be done with the use of a struct, since structs are passed by reference. Create a simple struct with one
member that will be used to retrieve the handle of the midi device.

struct m a$ As ptr

The midiOutOpen function looks like this. A return of 0 indicates success. An error code is returned in the
function is not successful.

Cal | DLL #w nmm " m di Qut Qpen", _

m As struct, 'address of mdi Qut handl e

-1 As ulong, _ 'ID of MD output device

0 As ulong, 'callback, not used

0 As ulong, _'callback instance, not used

0 As ulong,_'callback event flag, not used

ret As ulong 'O=success (MUMSYSERR NCERRCR = 0)

After the function returns, you can retrieve the handle to the midi device and assign its value to a numeric
variable to be used in subsequent calls to the device.

page 1/7

https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce
http://alycesrestaurant.com/apilb/index.htm

Liberty BASIC Programmer's Encyc

hM di Qut = ma$.struct 'handle to m di device

Bytes and Words

Messages sent to the midi device are often composed of multiple values that are combined into a dword. A
dword consists of two word values and each word value consists of two bytes, a high byte and a low byte.
To create a word from these two byte values, the high byte value is multiplied by 256 and added to the low
byte value.

hibyte = value2 *256
lobyte = valuel
lowword = hibyte + lowbyte

A dword consists of two word values. The high word value is multipled by (256*256) and added to the low
word value to form a dword.

hiword = value3 * 256 * 256
dwMsg = hiword + lowword

Setting Midi Volume

The message midiOutSetVolume sets the volume for the left and right speakers. It requires the handle to
the midi device from the midiOutOpen function, as well as a dword value specifying the volume. The left
channel’s volume is passed in the low word and the right channel’s volume is passed in the high word. If a
device does not support both left and right volume control, the low word specifies the mono volume level,
and the high word is ignored. The values for each may be in the range of 0 to 65535, which is the same as
hexadecimal FFFF.

Create the dword and set the volume as in this example that specifies a medium volume from both
speakers.

| owwWol = hexdec("FF") '"left channel nedi um vol une
hi Vol = hexdec("FF") 'right channel medi um vol une
"dword = (hiword value * 256) + |l owwrd val ue

m di Vol = (hiVol * 256) + | owNol

calldl'l #w nnm "m di Qut Set Vol une", 'set volunme for mdi playback
hM di Qut as ulong,_ 'handle to mdi device
m di Vol as ul ong, _ 'vol une

page 2 /7

Liberty BASIC Programmer's Encyc

ret As ulong 'O=success (MMBYSERR NOERRCR = 0)

midiOutShortMsg

The function midiOutShortMsg is used to send messages to the opened midi device. It requires the handle
to the opened midi device and the message is a dword, as described above.

Cal | DLL #w nmm " m di Qut Short Msg", _

hM di Qut As ulong, _ 'handle to opened device
dwMsg As ul ong, _ ' nessage

ret As ul ong

Selecting a Voice

There are 128 voices available in the midi mapper. They are indexed 0 — 127. A list of voices can be found
at the end of this topic. Voices range from traditional musical instruments like piano, violin and flute to
sound effects such as a telephone and gunshot. The midiOutShortMsg function extracts the message for
the desired event from the low byte from the low word of the dword message. The event value to signify a
change in voice is 192. The high byte of the low word specifies the voice, which may be in the range
0-127. The high word contains the velocity, which must be in the range of 0-127.

event =192 'event 192 = change

voi ce=19 'val ues 0-127, 19=church organ

vel oci ty=127

| ow=(voi ce*256) +event

hi =vel oci t y*256* 256

dwivsg=I ow+thi

Cal I DLL #wW nmm "m di Qut Short Msg", _

hM di Qut As ulong, _ 'handle to opened device
dwisg As ul ong, ' nessage

ret As ul ong

Playing a Note

Use midOutShortMsg to cause a note to be played. It will be played using the currently set voice. The low
word - low byte event value for playing a note on channel 1 is 144. The pitch of the desired note is
contained in the high byte value of the low word. Use values from 0 to 127. The note C has a value of 48,
C# is 49, etc. To stop the note from sounding, set velocity (the high word) to zero.

page 3/7

Liberty BASIC Programmer's Encyc

note = 48 'play C note

event =144 'event 144 = play on channel 1

| ow=(not e*256) +event

vel oci ty=127

hi =vel oci t y*256* 256

dwivsg=I ow+thi

Cal I DLL #w nmm "m di Qut Short Msg", _

hM di Qut As ulong, _ 'handle to opened device
dwisg As ul ong, ' nessage

ret As ul ong

Stop All Notes from Sounding

Use midiOutShortMsg to stop all notes from sounding. The event value is 128.

vent =128 'event 128 = stop play

dwisg=event

Cal | DLL #w nmm " m di Qut Short Msg", _

hM di Qut As ulong, _ 'handle to opened device
dwMsg As ul ong, _ ' nessage

ret As ul ong

Close the Midi Device

When it is no longer needed, the midi device is closed with midiOutClose.

Cal | DLL #w nmm "m di Qut Cl ose", _
hM di Qut As ulong, _ 'handle to opened device
ret As ulong 'O=success (MMBYSERR NOERRCR = 0)

Demo

"get mdi mapper handl e

hM di =m di Qut Open()

print "Mdi handle: ";hMdi

"set volune to nedi um

cal |l m di Qut Set Vol une hM di, hexdec("FF"), hexdec("FF")

"signal a change in instrument

page 4 /7

Liberty BASIC Programmer's Encyc

"if event=192(change), voi ce=instrunent
event =192 'event 192 = change
voi ce=127 ' gunshot
vel oci ty=127
call m di Qut Short Msg hM di, voi ce, event, vel ocity

print "Press key to hear gunshot."
i nput a$

"now pl ay desi gnated note
"if event=144(play), voice=note
event =144 "event 144 = play on channel 1
voi ce=48 '48=note C
vel oci ty=127
call m di Qut Short Msg hM di, voi ce, event, vel ocity

print "Press key to hear phone ring."
i nput a$

"signal a change in instrunent
"if event=192(change), voi ce=instrunent
event =192 'event 192 = change
voi ce=124 ' phone ring
vel oci ty=127
call m di Qut Short Msg hM di, voi ce, event, vel ocity

'now pl ay desi gnated note
"if event=144(play), voice=note
event =144 "event 144 = play on channel 1
voi ce=48 '48=note C
vel oci ty=127
call m di Qut Short Msg hM di, voi ce, event, vel ocity

print "Press key to stop sound.”
i nput a$

"stop current note from pl ayi ng
event =144 "play on channel 1
vel oci ty=0 "stop note from playing
call m di Qut Short Msg hM di, voi ce, event, vel ocity

"stop all notes from playing
"event 128 = stop all notes
call m di Qut Short Msg hM di, voi ce, event, vel ocity

‘close mdi mapper

page 5/7

Liberty BASIC Programmer's Encyc

cal l

m di Qut Cl ose hM di

print "Goodbye"

end

Sub

m di Qut Set Vol umre hM di Qut, |eftVol, rightVol
"vol ume range=0- 65535 or hexadeci mal FFFF
m di Vol = (rightVol * 256) + |eftVo

calldl'l #w nnm "m di Qut Set Vol une”, _ 'set volunme for md
hM di Qut as ulong, _ 'handle to m di device
m di Vol as ul ong, _ 'vol une

ret As ulong '0O=success (MVMSYSERR NCERRCR = 0)
end sub

Function m di Qut Open()

Sub

Sub

struct m a$ As ptr
Cal | DLL #w nmm "m di Qut Open", _

m As struct, 'address of mdiQut handle

-1 As ulong, _ 'ID of MD output device

0 As ulong,_'callback, not used

0 As ulong, 'callback instance, not used

0 As ulong, _ 'callback event flag, not used

ret As ulong 'O=success (MMBYSERR NOERRCR = 0)
m di Qut Open = m a$. struct 'handle to mdi device
end function

m di Qut C ose hM di Qut

Cal | DLL #w nmm "m di Qut Cl ose", _

hM di Qut As ulong, _ 'handl e to opened device
ret As ulong '0O=success (MMSYSERR NCERRCR = 0)
end sub

m di Qut Short Msg hM di Qut, voi ce, event, vel ocity
‘voi ce 0-127

vel ocity 0-127, O stops note from playing
event 192 = change voice

event 144 = play on channel 1

event 128 = stop all notes

‘notes: 48=C, 49=C#, etc.

| ow=(voi ce*256) +event

hi =vel oci t y*256* 256

dwivsg=I ow+thi

Cal I DLL #w nmm "m di Qut Short Msg", _

hM di Qut As ulong, _ 'handle to opened device
dwisg As ul ong, ' nessage

ret As ul ong

pl ayback

page 6 /7

Liberty BASIC Programmer's Encyc

end sub

List of Voices

'list of 128 voices, in order of their MIDI indexes

'VOICE 0 = GRAND PIANO

Data "Grand Piano","Bright Grand","Electric Grand","Honky Tonk"
Data "Rhodes","Chorus Piano","Harpsichord","Clavinet"

Data "Celesta","Glockenspiel","Music Box","Vibraphone"

Data "Marimba","Xylophone","Tubular Bells","Dulcimer"

Data "Hammond Organ","Percussion Organ","Rock Organ"

Data "Church Organ","Reed Organ","Accordian","Harmonica"

Data "Tango Accordian"," Accoustic Nylon Guitar"

Data "Accoustic Steel Guitar","Electric Jazz Guitar"

Data "Electric Clean Guitar","Electric Mute Guitar"

Data "Overdrive Guitar","Distorted Guitar","Guitar Harmonic"

Data "Accoustic Bass","Electric Bass Finger","Electric Bass Pick"
Data "Fretless Bass","Slap Bass One","Slap Bass Two"

Data "Synth Bass One","Synth Bass Two","Violin","Viola","Cello"
Data "Contrabass","Tremolo Strings","Pizzicato Strings"

Data "Orchestra Harp","Timpani","String Ensemble One"

Data "String Ensemble Two","Synth Strings One","Synth Strings Two"
Data "Choir Ahhs","Voice Oohs","Synth Voice","Orchestra Hit"
Data "Trumpet","Trombone","Tuba","Mute Trumpet","French Horn"
Data "Brass Section","Synth Brass One","Synth Brass Two"

Data "Soprano Sax","Alto Sax","Tenor Sax","Bari Sax","Oboe"

Data "English Horn","Bassoon","Clarinet","Piccolo","Flute"

Data "Recorder","Pan Flute","Bottle Blow","Shakuhachi","Whistle"
Data "Ocarina","Square Wave","Sawtooth","Caliope","Chiff Lead"
Data "Charang","Solo Synth VX","Brite Saw","Brass and Lead"

Data "Fantasia Pad","Warm Pad","Poly Synth Pad","Space Vox Pad"
Data "Bowd Glas Pad","Metal Pad","Halo Pad","Sweep Pad"

Data "Ice Rain","Sound Track","Crystal"," Atmosphere","Brightness"
Data "Goblin","Echo Drops","Star Theme","Sitar","Banjo","Shamisen"
Data "Koto","Kalimba","Bagpipe","Fiddle","Shanai"

Data "Tinkle Bell","Agogo","Steel Drums","Wood Block","Taiko Drum"

Data "Melodic Tom","Synth Drum","Rev Cymbal"
Data "Guitar Fret Noise","Breath Noise","Sea Shore","Bird Tweet"

Data "Phone Ring","Helicopter"," Applause","Gunshot"
'VOICE 127 = GUNSHOT

page 7/7

http://www.tcpdf.org

	MidiMapper

