
Liberty BASIC Programmer's Encyc

Midi Mapper for Sound Effects
-

 Alyce
APIs for Liberty BASIC
copyright 2011 Alyce Watson, all rights reserved.
Midi Mapper for Sound Effects | The Midi Mapper | midiOutOpen | Bytes and Words | Setting Midi
Volume | midiOutShortMsg | Selecting a Voice | Playing a Note | Stop All Notes from Sounding | Close the
Midi Device | Demo | List of Voices

The Midi Mapper
You can play midi notes directly from the midi mapper without the need for files on disk. You can play
midi music, but you can also play sound effects. There are several midi voices that produce sound effects
like a gunshot, telephone ring, or bird tweet.

midiOutOpen
You must first open the midi device with midiOutOpen. The first argument is the address of the handle to
the midi device. This must be passed by reference so that the function can assign the handle to this
variable. It is not possible to pass a numeric variable by reference into an API call in Liberty BASIC. It can
be done with the use of a struct, since structs are passed by reference. Create a simple struct with one
member that will be used to retrieve the handle of the midi device.

struct m, a$ As ptr

The midiOutOpen function looks like this. A return of 0 indicates success. An error code is returned in the
function is not successful.

CallDLL #winmm, "midiOutOpen",_
m As struct,_ 'address of midiOut handle
-1 As ulong,_ 'ID of MIDI output device
0 As ulong,_ 'callback, not used
0 As ulong,_ 'callback instance, not used
0 As ulong,_ 'callback event flag, not used
ret As ulong '0=success (MMSYSERR_NOERROR = 0)

After the function returns, you can retrieve the handle to the midi device and assign its value to a numeric
variable to be used in subsequent calls to the device.

 page 1 / 7

https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce
http://alycesrestaurant.com/apilb/index.htm

Liberty BASIC Programmer's Encyc

hMidiOut = m.a$.struct 'handle to midi device

Bytes and Words
Messages sent to the midi device are often composed of multiple values that are combined into a dword. A
dword consists of two word values and each word value consists of two bytes, a high byte and a low byte.
To create a word from these two byte values, the high byte value is multiplied by 256 and added to the low
byte value.

hibyte = value2 *256
lobyte = value1
lowword = hibyte + lowbyte

A dword consists of two word values. The high word value is multipled by (256*256) and added to the low
word value to form a dword.

hiword = value3 * 256 * 256
dwMsg = hiword + lowword

Setting Midi Volume
The message midiOutSetVolume sets the volume for the left and right speakers. It requires the handle to
the midi device from the midiOutOpen function, as well as a dword value specifying the volume. The left
channel’s volume is passed in the low word and the right channel’s volume is passed in the high word. If a
device does not support both left and right volume control, the low word specifies the mono volume level,
and the high word is ignored. The values for each may be in the range of 0 to 65535, which is the same as
hexadecimal FFFF.

Create the dword and set the volume as in this example that specifies a medium volume from both
speakers.

lowVol = hexdec("FF") 'left channel medium volume
hiVol = hexdec("FF") 'right channel medium volume
'dword = (hiword value * 256) + lowword value
midiVol = (hiVol * 256) + lowVol
calldll #winmm, "midiOutSetVolume",_ 'set volume for midi playback
hMidiOut as ulong,_ 'handle to midi device
midiVol as ulong,_ 'volume

 page 2 / 7

Liberty BASIC Programmer's Encyc

ret As ulong '0=success (MMSYSERR_NOERROR = 0)

midiOutShortMsg
The function midiOutShortMsg is used to send messages to the opened midi device. It requires the handle
to the opened midi device and the message is a dword, as described above.

CallDLL #winmm, "midiOutShortMsg",_
hMidiOut As ulong,_ 'handle to opened device
dwMsg As ulong,_ 'message
ret As ulong

Selecting a Voice
There are 128 voices available in the midi mapper. They are indexed 0 – 127. A list of voices can be found
at the end of this topic. Voices range from traditional musical instruments like piano, violin and flute to
sound effects such as a telephone and gunshot. The midiOutShortMsg function extracts the message for
the desired event from the low byte from the low word of the dword message. The event value to signify a
change in voice is 192. The high byte of the low word specifies the voice, which may be in the range
0-127. The high word contains the velocity, which must be in the range of 0-127.

event=192 'event 192 = change
voice=19 'values 0-127, 19=church organ
velocity=127
low=(voice*256)+event
hi=velocity*256*256
dwMsg=low+hi
CallDLL #winmm, "midiOutShortMsg",_
hMidiOut As ulong,_ 'handle to opened device
dwMsg As ulong,_ 'message
ret As ulong

Playing a Note
Use midOutShortMsg to cause a note to be played. It will be played using the currently set voice. The low
word - low byte event value for playing a note on channel 1 is 144. The pitch of the desired note is
contained in the high byte value of the low word. Use values from 0 to 127. The note C has a value of 48,
C# is 49, etc. To stop the note from sounding, set velocity (the high word) to zero.

 page 3 / 7

Liberty BASIC Programmer's Encyc

note = 48 'play C note
event=144 'event 144 = play on channel 1
low=(note*256)+event
velocity=127
hi=velocity*256*256
dwMsg=low+hi
CallDLL #winmm, "midiOutShortMsg",_
hMidiOut As ulong,_ 'handle to opened device
dwMsg As ulong,_ 'message
ret As ulong

Stop All Notes from Sounding
Use midiOutShortMsg to stop all notes from sounding. The event value is 128.

vent=128 'event 128 = stop play
dwMsg=event
CallDLL #winmm, "midiOutShortMsg",_
hMidiOut As ulong,_ 'handle to opened device
dwMsg As ulong,_ 'message
ret As ulong

Close the Midi Device
When it is no longer needed, the midi device is closed with midiOutClose.

CallDLL #winmm, "midiOutClose",_
hMidiOut As ulong,_ 'handle to opened device
ret As ulong '0=success (MMSYSERR_NOERROR = 0)

Demo

'get midi mapper handle
hMidi=midiOutOpen()
print "Midi handle: ";hMidi

'set volume to medium
call midiOutSetVolume hMidi, hexdec("FF"),hexdec("FF")

'signal a change in instrument

 page 4 / 7

Liberty BASIC Programmer's Encyc

 'if event=192(change), voice=instrument
 event=192 'event 192 = change
 voice=127 'gunshot
 velocity=127
call midiOutShortMsg hMidi,voice,event,velocity

print "Press key to hear gunshot."
input a$

'now play designated note
 'if event=144(play), voice=note
 event=144 'event 144 = play on channel 1
 voice=48 '48=note C
 velocity=127
call midiOutShortMsg hMidi,voice,event,velocity

print "Press key to hear phone ring."
input a$

'signal a change in instrument
 'if event=192(change), voice=instrument
 event=192 'event 192 = change
 voice=124 'phone ring
 velocity=127
call midiOutShortMsg hMidi,voice,event,velocity

'now play designated note
 'if event=144(play), voice=note
 event=144 'event 144 = play on channel 1
 voice=48 '48=note C
 velocity=127
call midiOutShortMsg hMidi,voice,event,velocity

print "Press key to stop sound."
input a$

'stop current note from playing
 event=144 'play on channel 1
 velocity=0 'stop note from playing
call midiOutShortMsg hMidi,voice,event,velocity

'stop all notes from playing
 'event 128 = stop all notes
call midiOutShortMsg hMidi,voice,event,velocity

'close midi mapper

 page 5 / 7

Liberty BASIC Programmer's Encyc

call midiOutClose hMidi

print "Goodbye"
end

Sub midiOutSetVolume hMidiOut, leftVol, rightVol
 'volume range=0-65535 or hexadecimal FFFF
 midiVol = (rightVol * 256) + leftVol
 calldll #winmm, "midiOutSetVolume",_ 'set volume for midi playback
 hMidiOut as ulong,_ 'handle to midi device
 midiVol as ulong,_ 'volume
 ret As ulong '0=success (MMSYSERR_NOERROR = 0)
 end sub

Function midiOutOpen()
 struct m, a$ As ptr
 CallDLL #winmm, "midiOutOpen",_
 m As struct,_ 'address of midiOut handle
 -1 As ulong,_ 'ID of MIDI output device
 0 As ulong,_ 'callback, not used
 0 As ulong,_ 'callback instance, not used
 0 As ulong,_ 'callback event flag, not used
 ret As ulong '0=success (MMSYSERR_NOERROR = 0)
 midiOutOpen = m.a$.struct 'handle to midi device
 end function

Sub midiOutClose hMidiOut
 CallDLL #winmm, "midiOutClose",_
 hMidiOut As ulong,_ 'handle to opened device
 ret As ulong '0=success (MMSYSERR_NOERROR = 0)
 end sub

Sub midiOutShortMsg hMidiOut,voice,event,velocity
 'voice 0-127
 'velocity 0-127, 0 stops note from playing
 'event 192 = change voice
 'event 144 = play on channel 1
 'event 128 = stop all notes
 'notes: 48=C, 49=C#, etc.
 low=(voice*256)+event
 hi=velocity*256*256
 dwMsg=low+hi
 CallDLL #winmm, "midiOutShortMsg",_
 hMidiOut As ulong,_ 'handle to opened device
 dwMsg As ulong,_ 'message
 ret As ulong

 page 6 / 7

Liberty BASIC Programmer's Encyc

 end sub

List of Voices
'list of 128 voices, in order of their MIDI indexes
'VOICE 0 = GRAND PIANO
Data "Grand Piano","Bright Grand","Electric Grand","Honky Tonk"
Data "Rhodes","Chorus Piano","Harpsichord","Clavinet"
Data "Celesta","Glockenspiel","Music Box","Vibraphone"
Data "Marimba","Xylophone","Tubular Bells","Dulcimer"
Data "Hammond Organ","Percussion Organ","Rock Organ"
Data "Church Organ","Reed Organ","Accordian","Harmonica"
Data "Tango Accordian","Accoustic Nylon Guitar"
Data "Accoustic Steel Guitar","Electric Jazz Guitar"
Data "Electric Clean Guitar","Electric Mute Guitar"
Data "Overdrive Guitar","Distorted Guitar","Guitar Harmonic"
Data "Accoustic Bass","Electric Bass Finger","Electric Bass Pick"
Data "Fretless Bass","Slap Bass One","Slap Bass Two"
Data "Synth Bass One","Synth Bass Two","Violin","Viola","Cello"
Data "Contrabass","Tremolo Strings","Pizzicato Strings"
Data "Orchestra Harp","Timpani","String Ensemble One"
Data "String Ensemble Two","Synth Strings One","Synth Strings Two"
Data "Choir Ahhs","Voice Oohs","Synth Voice","Orchestra Hit"
Data "Trumpet","Trombone","Tuba","Mute Trumpet","French Horn"
Data "Brass Section","Synth Brass One","Synth Brass Two"
Data "Soprano Sax","Alto Sax","Tenor Sax","Bari Sax","Oboe"
Data "English Horn","Bassoon","Clarinet","Piccolo","Flute"
Data "Recorder","Pan Flute","Bottle Blow","Shakuhachi","Whistle"
Data "Ocarina","Square Wave","Sawtooth","Caliope","Chiff Lead"
Data "Charang","Solo Synth VX","Brite Saw","Brass and Lead"
Data "Fantasia Pad","Warm Pad","Poly Synth Pad","Space Vox Pad"
Data "Bowd Glas Pad","Metal Pad","Halo Pad","Sweep Pad"
Data "Ice Rain","Sound Track","Crystal","Atmosphere","Brightness"
Data "Goblin","Echo Drops","Star Theme","Sitar","Banjo","Shamisen"
Data "Koto","Kalimba","Bagpipe","Fiddle","Shanai"
Data "Tinkle Bell","Agogo","Steel Drums","Wood Block","Taiko Drum"
Data "Melodic Tom","Synth Drum","Rev Cymbal"
Data "Guitar Fret Noise","Breath Noise","Sea Shore","Bird Tweet"
Data "Phone Ring","Helicopter","Applause","Gunshot"
'VOICE 127 = GUNSHOT

Powered by TCPDF (www.tcpdf.org)

 page 7 / 7

http://www.tcpdf.org

	MidiMapper

