Liberty BASIC Programmer's Encyc

Trapping Mouse and Keyboard Events in Graphics

Table of Contents

Trapping Mouse and Keyboard Events in Graphics

Box or Window?

Focus
When Event

List of Events

Turning Off Event Trapping

Mouse Coordinates and Keys Pressed

Branch Label Event Handlers

Sub Event Handlers

Reading Keystrokes
Virtual-Key Codes

Key Up and Key Down

Some information and code in this article are taken from the Liberty BASIC helpfile.

Box or Window?

The event trapping information given below works in the same way for graphicbox controls and for
windows opened for graphics.

WARNING: graphicboxes in dialog-type windows do not properly accept the input focus for keyboard
events. If a program needs graphicboxes that trap keyboard events, use a window of type "window".

Focus

page 1/9

Liberty BASIC Programmer's Encyc

Keyboard events are only trapped when a graphicbox or graphics window has the input focus. For
example, to cause focus to be directed to a graphicbox, issue a SETFOCUS command.

#mai n. gr aphi cbox "setfocus”

When Event

The only way to trap mouse events and keyboard events in a Liberty BASIC program is within a
graphicbox or graphics window. This is done with the "when event" command. The synax is as follows:

#gr aphi csHandl e "when event event Handl er”

Mouse events consist of left button mouse single-clicks, double-clicks, and drags, right button single-
clicks, double-clicks and drags, middle button single-clicks, double-clicks and drags, and mouse moves
when no button has been clicked.

Keyboard events are triggered when the user presses a key on the keyboard.

The eventHandler for the "when event" command can be a valid branch label or the name of a subroutine.

List of Events

Most commands are not case sensitive. That is not true of the "when event" commands. The event names
are case sensitive. The capitalization scheme is different than other case sensitive keywords, where the
first letter is usually upper case. The first letter in "when event" commands is lower case.
"LeftButtonDown" is not correct and will not work. "leftButtonDown" is correct and will work.

Case Counts!

leftButtonDown the left mouse button has been pressed
leftButtonUp the left mouse button has been released
leftButtonMove the mouse moved while the left button was down
leftButtonDouble the left mouse button has been double-clicked
rightButtonDown the right mouse button has been pressed
rightButtonUp the right mouse button has been released

page2/9

Liberty BASIC Programmer's Encyc

rightButtonMove the mouse moved while the right button was down
rightButtonDouble the right mouse button has been double-clicked
middleButtonDown the middle mouse button has been pressed
middleButtonUp the middle mouse button has been released
middleButtonMove the mouse moved while the middle button was down
middleButtonDouble the middle mouse button has been double-clicked
mouseMove the mouse moved when no button was down
characterInput a key was pressed while the graphics window has

input focus

Turning Off Event Trapping

To stop trapping an event, issue the "when event" command without a sub or branch label, like this:

#mai n. gbox "when | ef t But t onDown"

Trapping for any event can be turned on or off as many times as needed in the program.

Mouse Coordinates and Keys Pressed

Whenever a mouse event is trapped, Liberty BASIC places the x and y position of the mouse in the
variables MouseX, and MouseY. The values represent the mouse location as the number of pixels in x and
y from the upper left corner of the graphic window display pane. The special variables "MouseX" and
"MouseY" are case sensitive, as are all special variables in Liberty BASIC.

Whenever a keyboard event is trapped, Liberty BASIC places the value of the key(s) pressed into the

special variable, Inkey$. The special variable Inkey$ is case sensitive, as are all special variables in Liberty
BASIC.

Branch Label Event Handlers

page 3/9

Liberty BASIC Programmer's Encyc

If the event handler for the mouse or keyboard input is a branch label, Liberty BASIC will fill special
variables with information. If the event is a mouse event, the location of the mouse is placed into the
special variables MouseX and MouseY. These special variable names are case sensitive, so mouseX or
mousex are incorrect, for instance. The values are expressed as the number of pixels from the upper left
corner of the graphics area.

The following small demo allows you to see the mouse coordinates when the left button is clicked and
when the mouse is moved with no buttons pressed.

gr aphi cbox #1.g, 0,0, 200, 200

statictext #l.s, "Muse Coordinates", 10,210, 200, 50
statictext #1.t,

"Click left nouse button or nove nouse.", 10, 260, 200, 50
open "Muse Events" for w ndow as #1

#1 "trapclose [quit]"

#1.g "when | ef t Butt onDown [| eft Down]"

#1.g "when nouseMve [nouseMved]”

wai t

[1 ef t Down]

#1.s "MouseX is "; MuseX " MouseY is "; MouseY
wai t

[rouseMoved]
#1.s MouseX; " "; MouseY
wai t

[quit]cl ose #1:end
nomai nw n

Sub Event Handlers

If you use subroutines as mouse event handlers, be aware that branch labels elsewhere in the program are
not visible inside of subs. If the program attempts to handle other events while processing a mouse event
and it attempts to access a branch lable in the main program, the program will crash.

It's best to use subs for all other routines that handle user events when using subs for mouse event handlers.
Be sure to turn off mouse handling events when they are not needed, or when the event triggers a complex
code block. Events can stack up while waiting for code to finish executing and unexpected errors can
occur.

gr aphi cbox #1.g, 0,0, 200, 200

page 4/9

Liberty BASIC Programmer's Encyc

statictext #l.s, "Mouse Coordinates", 10,210, 200, 50
statictext #1.t,

"Click left nouse button or nove nouse.", 10, 260, 200, 50
open "Muse Events" for w ndow as #1

#1 "trapclose Qit"

#1.g "when | ef t Butt onDown | ef t Down"

#1.g "when nouseMove nouseMyved"

wai t

sub | eft Down hndl e$, nx, ny
#1.s "MuwuseX is ";nx;" MouseY is "; ny
end sub

sub nouseMoved hndl e$, nx, ny
#1.s nx;" "oy
end sub

sub Quit hndl e$
cl ose #hndl e$: end
end sub

nomai nw n

Reading Keystrokes

Keyboard input can only be trapped in graphics windows or graphicboxes that have the input focus. When
a key is pressed, the information is stored in the special variable Inkey$. The name Inkey$ is case
sensitive, as are all variable names in Liberty BASIC.

This special variable holds either a single typed character or multiple characters including a Windows
virtual key code. The virtual key codes are standard Windows constants, and include arrow keys, function
keys, the ALT, SHIFT, and CTRL keys, etc.

If Inkey$ is a single character, that character will be the key pressed. If the length of Inkey$ is more than
1, it holds multiple key information:. If Inkey$ holds more than one character, the first character will
indicate whether the Shift, Ctrl, or Alt keys was depressed when the key was pressed. These keys have the
following values:

Shift =4
Cul=38
Alt=16

They can be used in any combination. If Inkey$ contains more than one character, you can check to see
which (if any) of the three special keys was also pressed by using the bitwise AND operator. If shift alone
was pressed, then the value of the first character will be 4. If Shift and Alt were both pressed, then the
value of the first character will be 20, and so on. Special keys trigger a new value for Inkey$ when they are

page5/9

Liberty BASIC Programmer's Encyc

pressed and again when they are released. Here is an example that uses bitwise AND to determine which
special keys were pressed.

open "lnkey$ with Shift" for graphics_nf_nsb as #1
#1 "setfocus; when characterlnput [check]"

#1 "down; place 10 30"

#1 "\ Make the mai nwi ndow vi sible,"

#1 "\then click this w ndow and"

#1 "\ begin pressing key conbinations."

#1 "\Watch the printout in the mainw ndow. "

#1 "flush"
#1 "trapclose [quit]"
wai t
[check]
shift=4
ctrl =8
al t=16

a=asc(l eft $(1 nkey$, 1))
if len(lnkey$)>1 then
mp=""
if a and shift then nb="shift "
if a and ctrl then n$=n+"ctrl "
if aand alt then ng=nB+"alt "
print "Special keys pressed: " + nf
el se
print "Key pressed: " + |Inkey$
end if
wai t
[quit]

cl ose #1
end

Virtual-Key Codes

Liberty BASIC has a library of Virtual-Key codes that it understands, such as

_VK_NUMPAD?2

" Al pha-nuneric keys are expressed as ASCI| val ues:
PRI NT ASC("A")

page 6/9

Liberty BASIC Programmer's Encyc

PRI NT ASC("a")

" Speci al keys use Virtual Key Constant val ues:
PRI NT VK _NUMPAD2

PRI NT _VK_APPS

PRI NT VK F7

PRI NT _VK _RSHI FT

PRI NT VK F24

If you attempt to use an unknown Virtual-Key code, you'll get an error message from Liberty BASIC. In
that case, use the value of the Virtual-Key constant. You can find the values online:

Here is a list of Virtual-Key Codes from the Microsoft Developer's Network Library:
Virtual-Key Codes

The values are given in hexadecimal form. Use HexDec() to find the decimal value. The Ox at the
beginning of hexadecimal numbers simply signals the format in some languages. Omit that part in Liberty
BASIC. Here is an example.

" VK_LAUNCH_APP2 (0xB7)
print hexdec("B7")

Key Up and Key Down

Special keys trigger a new value for Inkey$ when they are pressed and again when they are released.

A virtual key is the key that is actually pressed on the keyboard. The VK value for a lower case letter is the
same as the value for the same letter in upper case because it refers to the key pressed on the keyboard, not
to the ASCII value of the input. Most keys have a graphical representation. You can see letters, numbers
and symbols in a texteditor as they are typed, for instance. There are some keys that do not have a
graphical representation. You must use Virtual Key Codes to discover which of these keys has been
pressed. They include the arrow keys, the F-keys, Shift, Ctrl, Alt, Del, etc.

Here is a program that gives a quick example:

"I nkey$ exanple, part two
ctrl$ = chr$(_VK _CONTRQOL)
print "Keys pressed:”
open "I nkey$ exanple" for graphics as #graph
print #graph, "when characterlnput [keyPressed]"”
print #graph, "trapclose [quit]"

[l oopHer e]

page 7/9

http://msdn.microsoft.com/en-us/library/dd375731(VS.85).aspx

Liberty BASIC Programmer's Encyc

"make sure #graph has input focus

print #graph, "setfocus”

"scan for events

scan

goto [| oopHer €]

[keyPressed]

key$ = |l eft $(1 nkey$, 2)

if len(key$) < 2 then
print "pressed: "; key$

el se
if right$(key$, 1) = ctrl$ then

print "CTRL was pressed”
el se
print "Unhandl ed special key

end if

end if

goto [| oopHer €]

[quit]

print "Quitting"

cl ose #graph

end

Table of Contents

Trapping Mouse and Keyboard Events in Graphics

Box or Window?

Focus
When Event

List of Events

Turning Off Event Trapping

Mouse Coordinates and Keys Pressed

Branch Label Event Handlers

Sub Event Handlers

Reading Keystrokes

page 8/9

Liberty BASIC Programmer's Encyc

Virtual-Key Codes

Key Up and Key Down

page 9/9

http://www.tcpdf.org

	MouseAndKeyboard

