Liberty BASIC Programmer's Encyc

Multiple-Timer Routines
May23, 2011

By -
nukesrus21 (Brandon Parker)

Table of Contents

Multiple-Timer Routines

Native Liberty Basic Timer Command

Timer Objectives

CallBacks and Associated Functions

Creating a Timer Queue

Deleting a Timer Queue and all Timer Queue Timers
Creating a Timer Queue Timer

Changing a Timer Queue Timer's Properties
Deleting Timer Queue Timers

Summary

Native Liberty Basic Timer Command

The native Liberty Basic Timer command manages a single Windows timer. While this is useful for
controlling program flow at certain intervals there are a few drawbacks.

1. There is ONLY ONE Timer.

2. There are also two bugs associated with the Timer command that cause issues found here: s
Tracker - Events

3. Timer events will build up if the program is busy doing something else or if a Notice Dialog is
issued and is not acnkowledged prior to the Timer firing.

page 1 /11

https://www.wikispaces.com/user/view/nukesrus21
https://www.wikispaces.com/user/view/nukesrus21
http://libertybasicbugs.wikispaces.com/Events
http://libertybasicbugs.wikispaces.com/Events

Liberty BASIC Programmer's Encyc

Here is the example from the Liberty Basic Helpfile:

"set atinmer to fire in 3 seconds
"using branch | abel event handl er
timer 3000, [itHappened]

"wait here
wai t

[t Happened]

‘deactivate the tiner

timer O

confirm"lt happened! Do it agai n?"; answer
i f answer then

'reactivate the tiner

timer 3000, [itHappened]

wai t

end if

end

As you can see the code to utilize the native Timer command is very simple and easy to use. Were it not
for the drawbacks mentioned previously we would not require anything further. That leads me to the topic
of this article.

Timer Objectives

We should start by stating the objectives for our timer.

. The user should be able to create multiple timers.

. The timer should work as well or better than the native Liberty Basic Timer.

. The timer should be easy to use and have an adjustable interval.

. The timer should have the capability of being removed during program execution.

. The timer events should not build up, but should cause the program to branch off and return when
completed.

6. The timer should be destroyed when the program execution has completed.

DN W N =

This is not exactly the simplest to do, but it can be acoomplished as we will soon see.

Introducing the Timer Queue Functions. These functions are Kernel32.dll which is part of the Windows
API. These functions make it possible for a Liberty Basic program to take advantage of Windows' Thread
Pooling capabilities where we can basically allow "worker threads" that are managed by Windows to
control our timers and the CallBacks to functions within the program. Not only does this approach make it

page 2/ 11

Liberty BASIC Programmer's Encyc

fairly simple to use multiple timers. It also prevents our Liberty Basic program from ever just sitting idle
while we peruse menus, context menus, or drag the window around (this last statement occurs if you use a
loop with a kernel sleep for timing not with the native Timer command).

Now that we have a general idea of what will be happening we should get right down to buisiness and start
learning how to use a few wrapper functions for these API calls.

In order to use the functions that will follow we will need to set up a couple structures and some constants
that we will be using along with a few other values that will be used for the function calls. They are as
follows:

"The first Structure is for holding the handl e
"to the created Tinmer Queue
Struct Ti mer Queue, handl e As ul ong

"The Second Structure is required for returning the
"handl e of the tinmer
Struct phNewTi ner, handl e As ul ong

"Now we will define a few flags that can be used.

WI. EXECUTEDEFAULT = _NULL

"By default, the callback function is queued to a non-
I / O wor ker thread.

WI'. EXECUTEONLYONCE = 8
"The timer will be set to the signaled state only once.
"If this flag is set, the Period paranmeter nust be zero.

DueTi me = 500
Peri od = 1500
Fl ags = WI. EXECUTEDEFAULT OR WI'. EXECUTELONGFUNCTI ON

Now that we have that all set. We should probably create a windows with a few things in it to play with.
Note that all of Dynamic Array Functions have been included to simplify the expandability of the
functions.

NoMai nW n
d obal True : True =1

d obal Fal se : Fal se 0

W ndowWw dth = 270

W ndowHei ght = 150

StaticText #Test.tinerl, "", 90, 25, 100, 25
StaticText #Test.tiner2, "", 90, 55, 100, 25

page 3/ 11

Liberty BASIC Programmer's Encyc

StaticText #Test.tiner3, "", 90, 85, 100, 25
Qpen "Multiple Tinmers via API" For Wndow As #Test
Print #Test, "TrapClose Quit"

Ok; so we have our window all set up. Should we get started on creating timers? Well, not just yet. We
should go right ahead and set up the CallBacks and associated Functions that our timers will be utilizing
that way we are all set to go once we create the timers.

CallBacks and Associated Functions

At this point if you are not familiar with CallBacks it would probably be a good idea to take a step back
and study them prior to returning to this tutorial. For the sake of simplicity and to shorten this I will just
provide the CallBacks and associated Functions rather than discussing the how/ why of them. Although I
would like to mention that these CallBacks require only two arguments; sending them more will cause
failure and their return types are Void although this is not necessarily set in stone.

Cal | Back Wi torTi nmer Cal | BackAdd, Wi torTi nmer Cal | Back(ULong, ULong), Voi d
Cal | Back Wit or Ti mer Cal | Back2Add,

Wai t or Ti mer Cal | Back2(ULong, ULong), Voi d

Cal | Back Wit or Ti mer Cal | Back3Add,

Wai t or Ti mer Cal | Back3(ULong, ULong), Voi d

Function WaitorTi mer Cal | Back(ULong, ULong)
Print #Test.tiner3, ""

Print #Test.tinmerl, "Timer #1 Fired"
End Function

Function Wi torTi nmer Cal | Back2(ULong, ULong)
Print #Test.tinerl, ""

Print #Test.tinmer2, "Tinmer #2 Fired"

End Function

Function WaitorTi mer Cal | Back3(ULong, ULong)
Print #Test.tiner2, ""

Print #Test.tinmer3, "Timer #3 Fired"

End Function

The CallBacks should be placed at the beginning of the program prior to attempting to create any Timer
Queue Timers.

page 4/ 11

Liberty BASIC Programmer's Encyc

Creating a Timer Queue

We will start by creating a timer queue for our program where all of our timers will reside. Although this is
not necessary if you will only be creating a few timers it never hurts for a program to have its own timer
queue. In order to do this we will need to call the CreateTimerQueue Function from the Kernel32.dll.

Here is the wrapper function we will be using:

Function CreateTi mer Queue()
Cal | DLL #kernel 32, "CreateTi ner Queue”, CreateTi mer Queue As ul ong
End Functi on

Notice that the CreateTimerQueue() Function we have created requires no parameters, but does return a
value; the handle to the Timer Queue. This value we will need to keep so we will store it in our
TimerQueue Structure. We will call the CreateTimerQueue() Function in the following manner which will
allow us to store the beforementioned handle to the Timer Queue.

Ti mer Queue. handl e. struct = CreateTi ner Queue()

And that is all you have to do to create a Timer Queue for a Liberty Basic program. With that being said
before we jump into creating Timer Queue Timers we first should look at how to destroy the Timer Queue
and any Timer Queue Timers because if we attempt to close our program without doing so we will have a
huge mess on our hands as the thread(s) in the thread pool that are controlling our Timer(s) will not know
that the program has been closed and will attempt to activate the code for the Timer(s). This normally will
cause a few pop-ups from Windows and will cause the program to crash (even the Liberty Basic IDE) all
the way to the Desktop.

Deleting a Timer Queue and all Timer Queue Timers

We will do destroy the Timer Queue and all Timer Queue Timers by calling the DeleteTimerQueueEx
Function from the Kernel32.dll.

Function Del et eTi mer QueueEx(Ti mer Queue, Conpl eti onEvent)

Cal | DLL #kernel 32, "Del eteTi mer QueueEx", Ti mer Queue As ul ong,
Conpl eti onEvent As ul ong,

Del et eTi mer QueueEx As ul ong

result$ = ReDi nOr Set StringArray$("Ti mer QueueTi mer"”, "NULL*", 0)

page 5/ 11

Liberty BASIC Programmer's Encyc

End Functi on

The DeleteTimerQueueEx() Function takes two arguments as input; TimerQueue and CompletionEvent.
TimerQueue is the handle to the Timer Queue. Remember from earlier that we stored that handle in
TimerQueue.handle.struct when we called the CreateTimerQueue() Function. CompletionEvent is
basically what the name describes; a handle to a completion event that will be called when all Timer Event
have completed. We will be passing _INVALID_HANDLE_VALUE as the argument for
CompletionEvent as this causes the function to wait for all callback functions to complete before
returning. The function returns a non-zero value if successful and zero otherwise. This will ensure that all
of our expected timed events are taken care of and makes for a very clean closing process for the Timer
Queue altogether.

To illustrate how this would be performed when closing a window here is a subroutine that would be used
to close our program. Notice that we make a call to the DeleteTimerQueueEx() Function prior to closing
our window.

Sub Quit handl e$

result = Del eteTi mer QueueEx(Ti mer Queue. handl e. struct,
_I NVALI D_HANDLE_VALUE)

Cl ose #handl e$

End

End Sub

Creating a Timer Queue Timer
Now we can get to the good part.... Creating Timers!!
We will accomplish this by calling the CreateTimerQueueTimer Function from the Kernel32.dlL.

As we examine the wrapper function CreateTimerQueueTimer() we will notice that the function expects
six arguments.

1. TimerName$ - This can be any name you wish to give the timer and is used with the Dynamic
Array Functions.

2. TimerQueue - This is the handle to the Timer Queue that we created by calling the
CreateTimerQueue() Function.

3. WaitorTimerCallBackAdd - This is the address of the CallBack Function we want the Timer to
call.

4. DueTime - This is the amount of time after the Timer is created that the process waits prior to
calling the supplied Function in milliseconds.

5. Period - This is the Timer Interval.

6. Flags - This OR'd value is a combination of flags that tells Windows how the Timer should work.

page 6/ 11

Liberty BASIC Programmer's Encyc

(You will find a list of some, but not all possible values in the full example below.)

The function returns a non-zero value if successful and zero otherwise. The function will also return the
handle to the newly created Timer in phNewTimer.handle.struct if it is successful.

You can also see that the Dynamic Array Function within the CreatetimerQueueTimer() Function will be
storing the Name, Handle, and Period of any Timer that we create inside the TimerQueueTimer$() Array.

Function CreateTi mer QueueTi ner (Ti mer Nane$, Ti ner Queue,

Wi t or Ti nmer Cal | BackAdd, DueTi ne, Period, Flags)

Cal | DLL #kernel 32, "CreateTi mer QueueTi ner", phNewTli ner As struct,
Ti mer Queue As ul ong, _

Wi t or Ti mer Cal | BackAdd As ul ong,

paraneter As | ong,

DueTi me As ul ong,

Period As ul ong,

Fl ags As ul ong,

Creat eTi mer QueueTi ner As | ong

Ti mer QueueTi nmer $(

Next Avai | abl eEl enent Stri ngArray("Ti mer QueueTi ner", False)) =

Ti mer Nane$ + " " + _

str$(phNewTi ner. handl e. struct) + " " +
str$(Peri od)

End Function

Ok, now that we have the function we should create a few timers to get things off to a good start. We will
create three timers for the three CallBacks and associated Functions that we set up in the beginning of this
tutorial.

result = CreateTi mer QueueTi mer (" Ti merl", TimerQueue. handl e. struct,
Wi t or Ti ner Cal | BackAdd, DueTi nme, Period, Flags)
result = CreateTi mer QueueTi mer (" Ti mer2", TimerQueue. handl e. struct,
Wai t or Ti ner Cal | Back2Add, _

DueTinme + Int(Period * .3), Period, Flags)
result = CreateTi mer QueueTi ner (" Ti mer3", TimerQueue. handl e. struct,
Wai t or Ti ner Cal | Back3Add, _

DueTime + Int(Period * .6), Period, Flags)

Now that we have created a few timers we should see how to change a Timer. That can be accomplished
by calling the ChangeTimerQueueTimer Function from the Kernel32.dll.

page 7/ 11

Liberty BASIC Programmer's Encyc

Changing a Timer Queue Timer's Properties

Here we have the wrapper function:

Warning: This function should not be used and should be replaced by the
ChangeTimerQueueTimerbyName() Function if the Dynamic Array Functions are in use as it will not
update the TimerQueueTimer$() Array.

Functi on ChangeTi mer QueueTi ner (Ti mer Queue, hTinmer, DueTinme, Period)
Cal | DLL #kernel 32, "ChangeTi nmer QueueTi ner"”, Ti mer Queue As ul ong,
hTi mer As ul ong,

DueTi me As ul ong,

Period As ul ong, _
ChangeTi mer QueueTi ner As ul ong
End Function

Examining the ChangeTimerQueueTimer() Function we find that it requires four inputs:

1. TimerQueue - This is the handle to the Timer Queue that we created by calling the
CreateTimerQueue() Function.

2. hTimer - This is the handle to the Timer that we want to change.

3. DueTime - This is the amount of time after the Timer is changed that the process waits prior to
calling the supplied Function in milliseconds.

4. Period - This is the NEW Timer Interval.

The function returns a non-zero value if successful and zero otherwise.

This is an example of how to call the function:

result = ChangeTi mer QueueTi ner (Ti mer Queue. handl e. struct, hTi ner,
DueTi me, Peri od)

Now keeping track of all of those Timer handles would be a pain had we not set everything up to where the
Dynamic Array Functions would storing our Timer information inside the TimerQueueTimer$() Array.
This makes it possible to create another function that calls the ChangeTimerQueueTimer() Function where
we supply the Name of the Timer instead of the handle.

Here is that function; ChangeTimerQueueTimerbyName():
Function ChangeTi mer QueueTi nmer byName(Ti mer Nane$, Ti ner Queue,

DueTi me, Peri od)
For i = 0 To UBoundStringArray("Ti mer QueueTi nmer")

page 8/ 11

Liberty BASIC Programmer's Encyc

If (TimerQueueTinmer$(i) = "") Then Exit For

I f TimerName$ = Wor d$(Ti mer QueueTimer$(i), 1) Then

Ti mer QueueTi mer $(i) = Word$(Ti ner QueueTinmer$(i), 1) + " " +
Wor d$(Ti ner QueueTiner$(i), 2) + " " + _

str$(Period)

ChangeTi mer QueueTi ner byNane = ChangeTi ner QueueTi ner (Ti mer Queue,
Val (Wor d$(Ti mer QueueTi ner$(i), 2)),

DueTi me, Peri od)

Exit For

End I f

Next i

End Function

This is how you would change a Timer by Name:

result = ChangeTi mer QueueTi mer byNanme(" Ti nmer 1",
Ti mer Queue. handl e. struct, DueTi nme, Peri od)

Deleting Timer Queue Timers

With respect to deleting timers there have been two functions created pretty much the same as with
changing the timers. The first wrapper function will delete a Timer based on its handle and the second
function will delete a Timer based on the name and is dependent upon the first function, but provides extra
flexibility.

The first is the DeleteTimerQueueTimer() Function:

Function Del et eTi mer QueueTi mer (Ti mer Queue, hTi ner, Conpl etionEvent)
Cal I DLL #kernel 32, "Del et eTi mer QueueTi nmer", Ti mer Queue As ul ong,
hTi mer As ul ong,

Conmpl eti onEvent As ul ong,
Del et eTi mer QueueTi ner As | ong

End Function

The second is the DeleteTimerQueueTimerbyName() Function:

" Conpl etionEvent can be _NULL or _I NVALI D HANDLE VALUE (reconmend the
| atter)
Function Del et eTi mer QueueTi ner byNane(ti mer Nane$, Ti ner Queue,
Conpl eti onEvent)
For i = 0 To UBoundStringArray("Ti mer QueueTi ner")
If (TimerQueueTinmer$(i) = "") Then Exit For

page 9/ 11

Liberty BASIC Programmer's Encyc

I f Vord$(Ti mer QueueTimer$(i), 1) = timerNane$ Then

Del et eTi mer QueueTi ner byNanme = Del et eTi mer QueueTi mer (Ti mer Queue,
Val (Wor d$(Ti mer QueueTi ner$(i), 2)),

Conpl eti onEvent)

Ti mer QueueTi mer$(i) = ""

result = ConpactStringArray("Ti mer QueueTi nmer™)

Exit For

End If

Next i
End Function

Both functions should be called as follows:

1. DeleteTimerQueueTimer() Function

result = Del et eTi mer QueueTi ner (Ti mer Queue. handl e. struct, hTi ner,
Conmpl eti onEvent

2. DeleteTimerQueueTimerbyName() Function

result = Del et eTi mer QueueTi ner byName(" Ti ner 1",
Ti mer Queue. handl e. struct, Conpl eti onEvent)

With either one of these calls we will be passing _INVALID_HANDLE_VALUE as the argument for
CompletionEvent as this causes the function to wait for all callback functions to complete before
returning. These functions return a non-zero value if successful and zero otherwise.

The last function to discuss is the TimerInterval() Function. This function can only be used if the Dynamic
Array Functions are being used. It requires a single parameter as its input; the Timer Name that the user
gave to the timer when it was created. The function returns the Timer Inverval associated with that Timer
in milliseconds.

Function Tinerlnterval (tinmer Nane$)

For i = 0 To UBoundStringArray("Ti mer QueueTi ner")
If (TimerQueueTiner$(i) = "") Then Exit For

I f Vord$(Ti mer QueueTimer$(i), 1) = timerNane$ Then
Tinmerlnterval = Val (Word$(Ti mer QueueTi mer$(i), 3))
Exit For

End If

Next i
End Function

page 10/ 11

Liberty BASIC Programmer's Encyc

Please note that the Dynamic Array Functions that are used in the functions above can be found through
the following link:

Dynamic Arrays

Summary

Pheeewww!!! That's about all it takes to make multiple timers. It seems like a lot of work, but trust me
once you understand how everything fits together you'll be creating timers left and right in no time.

Below you will find a working demo which uses some of the functions to create three timers that change
what is being displayed in the window. I hope this has been at least a little helpful...

{:0)

Brandon Parker

Timer Queue Functions (Multiple Timers).bas

e Details
e Download
e 31 KB

Multiple-Timer Routines | Native Liberty Basic Timer Command | Timer Objectives | CallBacks and
Associated Functions | Creating a Timer Queue | Deleting a Timer Queue and all Timer Queue Timers |

Creating a Timer Queue Timer | Changing a Timer Queue Timer's Properties | Deleting Timer Queue
Timers | Summary

page 11/ 11

http://libertybasic.conforums.com/index.cgi?board=tips&action=display&num=1269367637
/file/view/Timer%20Queue%20Functions%20%28Multiple%20Timers%29.bas/242359171/Timer%20Queue%20Functions%20%28Multiple%20Timers%29.bas
/file/view/Timer%20Queue%20Functions%20%28Multiple%20Timers%29.bas/242359171/Timer%20Queue%20Functions%20%28Multiple%20Timers%29.bas
/file/detail/Timer%20Queue%20Functions%20%28Multiple%20Timers%29.bas
/file/view/Timer%20Queue%20Functions%20%28Multiple%20Timers%29.bas/242359171/Timer%20Queue%20Functions%20%28Multiple%20Timers%29.bas
http://www.tcpdf.org

	MultipleTimerRoutines

