Liberty BASIC Programmer's Encyc

Allowing only one instance of your program

StPendl may 8, 2011

Table of Contents

Allowing only one instance of your program

The Basics

The API functions involved

The CreateMutex function

The GetLastError function

The ReleaseMutex function

The CloseHandle function

The full example

The Basics

Every now and then one wants to make sure that only one instance of his application is running to prevent
problems with shared resources when multiple instances are run concurrently.

This is called mutually exclusive access, in short Mut-Ex or mutex.

MSDN has a nice article about Mutex Objects, which you should read to get a general understanding of the
subject.

The API functions involved

The CreateMutex function

The first function is the one we use to create a mutex, which is the CreateMutex Function
It receives the security attributes, initial owner and name of our mutex object to create.

page 1/5


https://www.wikispaces.com/user/view/StPendl
https://www.wikispaces.com/user/view/StPendl
http://msdn.microsoft.com/en-us/library/ms684266(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682411(VS.85).aspx

Liberty BASIC Programmer's Encyc

We do not want to grant other processes or threads access to our mutex, so we use NULL for the security
attributes.

We want to be the initial owner of the mutex to prevent subsequent instances of our program to be run, so
we set that to TRUE = 1.

We select a unique name for our mutex to have it easily separated from other mutex objects.

In return we get the Windows handle of the mutex, so we can access it at a later stage.

Here is the code to do all of this.

" inherit the default security attributes
| pMut exAttri butes = NULL

" optain initial ownership by setting this to 1
blnitial Owmer =1

use a unique name for the mutex, nmaxi mum _MAX PATH = 260 characters
| pName$ = " LBMut ExDenmp"

cal 1 dl |l #kernel 32, "CreateMitexA",
| pMut exAttri butes as ul ong, _

bl ni ti al Owmer as long, _
| pNane$ as ptr, _
hMut ex as ul ong

The GetLastError function

The second function is the one we use to check if our mutex is already in use, which is the GetLastError
Function

It returns an error number indicating that the mutex is already present, which is
ERROR_ALREADY_EXISTS = 183.

If the mutex already exists, we do want our program to notify the user of this situation and end gracefully.

The call to CreateMutex has already created another handle to the mutex, so we need to close that handle
too.

Here is the code to do all of this.

ng

get the last error, so we know if there is already an instance runni

page2/5


http://msdn.microsoft.com/en-us/library/ms679360(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms679360(VS.85).aspx

Liberty BASIC Programmer's Encyc

cal ldl |l #kernel 32, "GetlLastError", _
LastError as ul ong

" check if there is already an instance runni ng (ERROR_ALREADY EXI STS
= 183)
if LastError = 183 then
" close the Wndows handl e obt ai ned
cal 1 dl |l #kernel 32, "d oseHandl e", _
hMut ex as ul ong, _
result as |ong

" exit if there is already an instance running
notice "Exiting!"; chr$(13); _
"Anot her instance of this programis already running!"
end
end if

The ReleaseMutex function

The third function is the one we use to free our mutex before we end the program, which is the
ReleaseMutex Function
It removes the ownership from the mutex.

This function must be called at the end of your program to be able to debug and run your program from
within the LB editor.

If it happens, that your program crashes, while the mutex is active, you need to restart the LB editor to free
the mutex.

Here is the code to do all of this.

free the nmutex so it is no |onger owned by this instance
cal 1 dl |l #kernel 32, "Rel easeMutex",

hMut ex as ul ong, _

result as |ong

The CloseHandle function

The fourth function is the one we use to close the handle to our mutex before we end the program, which
is the CloseHandle Function
It removes the mutex entirely from the system.

This function must be called at the end of your program to be able to debug and run your program from
within the LB editor.
If it happens, that your program crashes, while the mutex is active, you need to restart the LB editor to free

page3/5


http://msdn.microsoft.com/en-us/library/ms685066(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms724211(VS.85).aspx

Liberty BASIC Programmer's Encyc

the mutex.

Here is the code to do all of this.

cl ose the nutex handle to cl eanup
cal 1 dll #kernel 32, "d oseHandl e", _
hMut ex as ul ong, _

result as |ong

The full example

You can run the example code below multiple times from the LB editor, but only the first run will be fully
executed.
Any attempt to run another instance will result in the notice, that there is already an instance running.

Only if you close all running instances, you will be able to fully run another one.

inherit the default security attributes
| pMut exAttri butes = _NULL

" optain initial ownership by setting this to 1
blnitial Owmer =1

use a unique name for the mutex, nmaxi mum _MAX PATH = 260 characters
| pNane$ = " LBMut ExDeno"
' create the nutex
cal 1 dl | #kernel 32, "CreateMitexA",
| pMut exAttri butes as ul ong, _

bl niti al Owner as |long, _
| pNane$ as ptr, _
hMut ex as ul ong

ng

get the last error, so we knowif there is already an instance runni

cal ldl |l #kernel 32, "GetlLastError", _
LastError as ul ong

" check if there is already an instance runni ng (ERROR_ALREADY EXI STS
= 183)
if LastError = 183 then

page4/5



Liberty BASIC Programmer's Encyc

' close the Wndows handl e obtai ned
cal I dl'l #kernel 32, "C oseHandl e", _
hMut ex as ul ong, _
result as |ong
" exit if there is already an instance running
notice "Exiting!"; chr$(13); _
"Anot her instance of this programis already running!"
end
end if

nomai NW n
Upper Left X
Upper LeftyY

1
1

open "I amthe first programinstance" for w ndow as #m
#m "trapclose [quit]"
wai t

[quit]
cl ose #m

" free the nutex so it is no |longer owned by this instance
cal I dl'l #kernel 32, "Rel easeMut ex", _
hMut ex as ul ong, _
result as |ong
" close the mutex handle to cl eanup
cal 1 dll #kernel 32, "d oseHandl e", _
hMut ex as ul ong, _
result as |ong
end

page5/5


http://www.tcpdf.org

	MutEx

