
Liberty BASIC Programmer's Encyc

Allowing only one instance of your program
-

 StPendl May 8, 2011

Table of Contents
Allowing only one instance of your program

The Basics

The API functions involved

The CreateMutex function

The GetLastError function

The ReleaseMutex function

The CloseHandle function

The full example

The Basics

Every now and then one wants to make sure that only one instance of his application is running to prevent
problems with shared resources when multiple instances are run concurrently.

This is called mutually exclusive access, in short Mut-Ex or mutex.

MSDN has a nice article about Mutex Objects, which you should read to get a general understanding of the
subject.

The API functions involved

The CreateMutex function

The first function is the one we use to create a mutex, which is the CreateMutex Function
It receives the security attributes, initial owner and name of our mutex object to create.

 page 1 / 5

https://www.wikispaces.com/user/view/StPendl
https://www.wikispaces.com/user/view/StPendl
http://msdn.microsoft.com/en-us/library/ms684266(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682411(VS.85).aspx

Liberty BASIC Programmer's Encyc

We do not want to grant other processes or threads access to our mutex, so we use NULL for the security
attributes.
We want to be the initial owner of the mutex to prevent subsequent instances of our program to be run, so
we set that to TRUE = 1.
We select a unique name for our mutex to have it easily separated from other mutex objects.

In return we get the Windows handle of the mutex, so we can access it at a later stage.

Here is the code to do all of this.

 ' inherit the default security attributes
 lpMutexAttributes = _NULL

 ' optain initial ownership by setting this to 1
 bInitialOwner = 1

' use a unique name for the mutex, maximum _MAX_PATH = 260 characters
 lpName$ = "LBMutExDemo"

 calldll #kernel32, "CreateMutexA",_
 lpMutexAttributes as ulong,_
 bInitialOwner as long,_
 lpName$ as ptr,_
 hMutex as ulong

The GetLastError function

The second function is the one we use to check if our mutex is already in use, which is the GetLastError
Function
It returns an error number indicating that the mutex is already present, which is
ERROR_ALREADY_EXISTS = 183.

If the mutex already exists, we do want our program to notify the user of this situation and end gracefully.

The call to CreateMutex has already created another handle to the mutex, so we need to close that handle
too.

Here is the code to do all of this.

' get the last error, so we know if there is already an instance runni
ng

 page 2 / 5

http://msdn.microsoft.com/en-us/library/ms679360(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms679360(VS.85).aspx

Liberty BASIC Programmer's Encyc

 calldll #kernel32, "GetLastError",_
 LastError as ulong

' check if there is already an instance running (ERROR_ALREADY_EXISTS
= 183)
 if LastError = 183 then
 ' close the Windows handle obtained
 calldll #kernel32, "CloseHandle",_
 hMutex as ulong,_
 result as long

 ' exit if there is already an instance running
 notice "Exiting!"; chr$(13);_
 "Another instance of this program is already running!"
 end
 end if

The ReleaseMutex function

The third function is the one we use to free our mutex before we end the program, which is the
ReleaseMutex Function
It removes the ownership from the mutex.

This function must be called at the end of your program to be able to debug and run your program from
within the LB editor.
If it happens, that your program crashes, while the mutex is active, you need to restart the LB editor to free
the mutex.

Here is the code to do all of this.

 ' free the mutex so it is no longer owned by this instance
 calldll #kernel32, "ReleaseMutex",_
 hMutex as ulong,_
 result as long

The CloseHandle function

The fourth function is the one we use to close the handle to our mutex before we end the program, which
is the CloseHandle Function
It removes the mutex entirely from the system.

This function must be called at the end of your program to be able to debug and run your program from
within the LB editor.
If it happens, that your program crashes, while the mutex is active, you need to restart the LB editor to free

 page 3 / 5

http://msdn.microsoft.com/en-us/library/ms685066(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms724211(VS.85).aspx

Liberty BASIC Programmer's Encyc

the mutex.

Here is the code to do all of this.

 ' close the mutex handle to cleanup
 calldll #kernel32, "CloseHandle",_
 hMutex as ulong,_
 result as long

The full example

You can run the example code below multiple times from the LB editor, but only the first run will be fully
executed.
Any attempt to run another instance will result in the notice, that there is already an instance running.

Only if you close all running instances, you will be able to fully run another one.

 ' inherit the default security attributes
 lpMutexAttributes = _NULL

 ' optain initial ownership by setting this to 1
 bInitialOwner = 1

' use a unique name for the mutex, maximum _MAX_PATH = 260 characters
 lpName$ = "LBMutExDemo"

 ' create the mutex
 calldll #kernel32, "CreateMutexA",_
 lpMutexAttributes as ulong,_
 bInitialOwner as long,_
 lpName$ as ptr,_
 hMutex as ulong

' get the last error, so we know if there is already an instance runni
ng
 calldll #kernel32, "GetLastError",_
 LastError as ulong

' check if there is already an instance running (ERROR_ALREADY_EXISTS
= 183)
 if LastError = 183 then

 page 4 / 5

Liberty BASIC Programmer's Encyc

 ' close the Windows handle obtained
 calldll #kernel32, "CloseHandle",_
 hMutex as ulong,_
 result as long

 ' exit if there is already an instance running
 notice "Exiting!"; chr$(13);_
 "Another instance of this program is already running!"
 end
 end if

 nomainwin
 UpperLeftX = 1
 UpperLeftY = 1

 open "I am the first program instance" for window as #m
 #m "trapclose [quit]"
 wait

[quit]
 close #m

 ' free the mutex so it is no longer owned by this instance
 calldll #kernel32, "ReleaseMutex",_
 hMutex as ulong,_
 result as long

 ' close the mutex handle to cleanup
 calldll #kernel32, "CloseHandle",_
 hMutex as ulong,_
 result as long
 end

Powered by TCPDF (www.tcpdf.org)

 page 5 / 5

http://www.tcpdf.org

	MutEx

