
Liberty BASIC Programmer's Encyc

Numbers in Liberty BASIC
(all you ever wanted to know about numbers but did not know whom to ask ;))
by -

 tsh73, January 2012
Note to author: if you need to edit this page, let us know. It has been systematically vandalised, so I'm locking
it.

Table of Contents
Numbers in Liberty BASIC

Integer numbers

Long integers (aka Arbitrary length integers)

Real numbers

Range limitation

Precision limitation

Precision limitation consequences

Saving/loading real number

Using numbers as Booleans

Liberty BASIC has only two data types: string and numbers. So if you have any numerical result it entitled
to be "just a number". However, "under the hood" numbers in any programming language are a bit more
complicated. Liberty BASIC is not an exception – and has complications (and unique abilities) of its own.
To get most out of Liberty BASIC, you must understand what’s going on.

Numbers could be integers (AKA whole numbers) – without decimal point – and real numbers (AKA
floating point numbers). Since Liberty BASIC has no Boolean (logical, yes/no true/false) datatype,
numbers are used for this purpose as well.

Integer numbers
Whole numbers like 0, 1, 123, -7 are integers.

 page 1 / 7

https://www.wikispaces.com/user/view/tsh73
https://www.wikispaces.com/user/view/tsh73

Liberty BASIC Programmer's Encyc

Combining integers with + - * MOD operators produces a result that is also an integer. Obviously, result of
a division could end up as a non-integer (having fractional part). It is less obvious that power operators on
integers could produce non-integer results: for example, 2^(-1) is actually 0.5.

Liberty BASIC has no "integer division" operator, but it could be done as INT(a/b), taking only the integer
part of result.

Long integers (aka Arbitrary length integers)

Now, there is a somewhat unique strong point in Liberty BASIC: in most of languages, the size of an
integer is determined by the underlying computer architecture.

QBasic's integer type is stored in 2 bytes, and hence limited to +/- 2^15, from -32,768 to 32,767.

In contemporary C, an integer is stored in 4 bytes, so it is limited to +/-2^31, from -2,147,483,648 to
2,147,483,647.

To get all 158 digits of 100! (factorial of 100, defined as 1*2*3*...*99*100) in these languages one has to
invent things, but for Liberty BASIC, numbers of such length pose no problem:

f=1

n=100

for i=1 to n

 f=f*i

next

print len(str$(f))

print f

output is (line breaks added to the long number for page formatting):

158 – number of digits

and factorial itself, hold your breath:

9332621544394415268169923885626670049071596826438162146859296389

 page 2 / 7

Liberty BASIC Programmer's Encyc

5217599993229915608941463976156518286253697920827223758251185210

916864000000000000000000000000

It looks like the length of those integers is limited only by available memory and computer speed (of
course working with these beasts will be slower!). So getting 10^10000 might take several seconds. But it
works, and with all digits!

Functions VAL() and STR$() in Liberty BASIC support long integers.

(Of course) +, -, *, as well as ^ and MOD supports long integers.

If a is a long integer and a/b is supposed to be whole number,
then a/b will be a long integer
else a/b will be a real number (and it even could overflow).

There are some beneficial quirks about INT(a/b):

If a is a long integer, and a/b is supposed to be real number,
then result will be a long integer (with all digits preserved). Also we evade real overflow.

It looks like Liberty BASIC somehow bypasses the intermediate step of storing a/b as real.
It looks like when calling standard math functions, the argument is converted to the "real" data type. This
way, you can get overflow. So while 10^200 is within double range, you cannot get it by sqr(10^400) –
10^400 will try to convert to real and overflow.

Real numbers
Storing (small) integers is rather straightforward but our data or result turns out to be non-integer. It
strongly looks like they end up stored in common in some other languages DOUBLE data type. This data
type came with common limitations (existing in many programming languages):

Range limitation

Here is data on limitation for double-precision numbers from QBasic Help:

Positive 1.79769313486231D+308 4.940656458412465D-324

 page 3 / 7

Liberty BASIC Programmer's Encyc

Negative -4.940656458412465D-324 -1.79769313486231D+308

If your result exceeds these limits, you’ll get overflow error. In Liberty BASIC, it is easy to get when
working with long integers.

Precision limitation

Double real value stores only about 16 "real" digits. You can check it with USING function:

mask$="#."

for i=1 to 20: mask$=mask$+"#": next '20 digits after "."

print using(mask$, 1/3)

print "*.12345678901234567890"

prints

0.33333333333333331968

*.12345678901234567890

, that is, we get “garbage” after 16-th digit.

Just checking how small number d should be so 1+d will register as d:

d=1

for i=1 to 20

 d=d/10

 a=1+d

 print i,1-a

next

Precision limitation consequences

 page 4 / 7

Liberty BASIC Programmer's Encyc

This gives some really bad things you should be aware of (and it is not a bug, it is a way real numbers work
in pretty much any language):

You should not count on real numbers being exact.
You should never test real numbers for being exactly equal.

a = 2.1 - 2

b = 0.1

print a, b

if a=b then print "Equal" else print "Not equal"

print "Difference "; a-b

Output:

0.1 0.1

Not equal

Difference 0.83266727e-16

Instead, you should test for equality with given precision:

precision = 1e-10

if abs(a - b) < precision then print
"Equal with precision" else print "Not equal"

You should not make FOR loops with real step,
if the number of steps is important (like in numerical integration).

for i = 1 to 2 step 0.1

 print i

next

This example misses the last step (end up on 1.9 instead of 2.0).

Instead, you should use loop by integer index.

 page 5 / 7

Liberty BASIC Programmer's Encyc

Saving/loading real number

There is no way in Liberty BASIC to save/load real number in binary representation, making sure we read
back exactly what we saved. The only provided way is in text form.
The problem is that PRINT outputs only 7 digits of 16 we could use. If we try STR$, we’ll see that it has
same limitation.
The USING function could provide the necessary precision, but how do we get right mask? There no
support for scientific notation.

This handy function could help. To save 15 digits of x, use usingS$(x,15) :

'scientific USING function.

'(keep in mind that there are no more then 16 digits stored in real nu
mber (Double data type)).

function usingS$(n,prec)

 if n = 0 then usingS$="0e+0":exit function

 fmt$ = "#"+left$(".",prec>0)+left$("#################",prec)

'fmt of mantissa

 s$=left$("-",n<0)

 n=abs(n)

 log10=log(n)/log(10)

 e=int(log10)-(log10<0)

'QB like INT. Makes mantissa for negative exponents

 'start from digit (not 0 as LB do)

 p=10^e

 if left$(using(fmt$,n/p),1)="%" then p=p*10:e = e+1

 usingS$=s$+using(fmt$,n/p) +"e"+left$("+",e>0) +str$(e)

 page 6 / 7

Liberty BASIC Programmer's Encyc

'Excel always shows "+" for exponent

end function

Using numbers as Booleans
As was stated, Liberty BASIC lacks a Boolean type, but it does have conditional statements. A condition
normally evaluates to false or true.

If we print result of any relational operator (> =

Powered by TCPDF (www.tcpdf.org)

 page 7 / 7

http://www.tcpdf.org

	Numbers in LB

