Liberty BASIC Programmer's Encyc

OpenGL 3D graphics in Liberty BASIC

Lesson One: Introduction and Basic Shapes

by Robert McAllister

Introduction

To start with, I have to say that the following is only my understanding of OpenGL graphics and how to
use it in Liberty BASIC. I'm by no means an expert when it comes to 3D but I have picked up a basic
working knowledge of it and would like to pass it along to my fellow LBer’s. (With a little arm twisting,
Thanks Rod)

The first thing you need to know is to not be afraid to experiment with OpenGL, you will not burn up your
video card or set your monitor on fire if you make a mistake. Actually, if there is an error in a call to
OpenGL, it will just ignore it and keep plugging along.

OpenGL is a “state” environment, much like LB graphics. For example, when you make a call to
“glColor4fv”, all objects created thereafter will have that color applied to them, just like the LB graphics
command #1, "color red".

Probably one of the most difficult things to understand with 3D is the coordinate system. With LB
graphics we are all familiar with X, Y coordinates. X is left to right, Y is up and down. 3D adds one more
parameter, Z for depth. With these 3 coordinates we can define a vertex (a point in space) for the objects
we want to create. Imagine you have a cereal box in front of you. Each of the 8 corners of the box can be
described as a vertex, or a set of X, Y and Z coordinates. One other thing to keep in mind is that the center
of the OpenGL window is 0, 0, 0 and we build our scene outward from there.

Basic Shapes

So let’s get started! Create a new folder and then download & extract the following file to it. This file
contains an LB .bas file, two DLL’s and a bitmap. The program is set up so you copy & paste any of the
code snippets from the lessons into the top section and run them. The SDL.dIl (Simple DirectMedia Layer)
is from http://www.libsdl.org/ and its sole purpose here is to create an OpenGL window that is Vista
friendly. The DevIl.dll (Developers Image Library) is from http://openil.sourceforge.net/ and its sole
purpose here is to load bitmaps in a form that can be used by OpenGL.

OpenGL in [.B.zip

page 1/4


http://www.libsdl.org/
http://openil.sourceforge.net/
/file/view/OpenGL%20in%20LB.zip/547291484/OpenGL%20in%20LB.zip
/file/view/OpenGL%20in%20LB.zip/547291484/OpenGL%20in%20LB.zip

Liberty BASIC Programmer's Encyc

¢ Details
e Download
e 475 KB

OK, run the LB program as is...

Wow, a dot! Well this first program is meant to be as simple as possible so I can describe some of the
basics about how the 3D works. The first line “GOSUB [Initialize]” sets up the main window and
initializes the 3D. If you would like, you can change the size of the main window and/or the 3D window.

CALL
Cl earView eyeX , eyeY , eyeZ , centerX , centerY , centerZ , upX, up
Y , upZ
CALL gl Color4fv 12, 0, 0, 1
CALL gl Point Si ze 3
CALL gl Begin G.. PO NTS
CALL gl Vertex 0, 0, O
CALL gl End
CALL RefreshVi ew
VAIT

The next line “CALL ClearView ...” clears the buffer we will be drawing to. This implementation of 3D
uses two buffers, you can think of them as screens. One is displayed while the other is being created.
When you are ready to see what has been created, the buffers are swapped.

The following line “CALL glColor4fv...” sets the R G B colors for the object we are about to create. The
first three values can be between 0 and 1. Zero means than none of that color will be used, .5 means that
50% of that color will be used. And 1 tells it to use 100% of the color. The fourth value, alpha, will be
discussed later. For now leave it as 1.

“CALL glPointSize 3” tells OpenGL to make points with 3 for the size. The default value is 1.

In the next 3 lines, “CALL glBegin GL.POINTS” lets OpenGL know that we will be creating a point.
“CALL glVertex 0, 0, 0” specifies the location of the point and “CALL glEnd” tells OpenGL that we are
done with this set of commands. Each object must be defined inside a set of glBegin/glEnd commands.
“CALL RefreshView” swaps the buffers so we can see what we've created.

And that’s as simple as it gets. Opengl is only capable of creating 3 basic objects; points, lines and

polygons. More complex objects are built up from these 3. Also, OpenGL is optimized for processing
triangles. This is due to that fact that triangles are always on a single plane so they don't require complex

page2/4


/file/detail/OpenGL%20in%20LB.zip
/file/view/OpenGL%20in%20LB.zip/547291484/OpenGL%20in%20LB.zip

Liberty BASIC Programmer's Encyc

calculations for rendering.

The following snippets will create a line, a triangle and a square. Note that you can specify a different
color for each vertex to create some nice effects.

" Line
CALL

Cl ear Vi ew eyeX ,
upZ

Y,

eyeY , eyeZ ,

"CALL gl Linewdth 3
CALL gl Begin G.. LINES

CALL
CALL
CALL
CALL

gl Colordafv 1, 0, 0, 1
gl Vertex -1, -1, O
glColor4fv 0O, 0, 1, 1
g Vertex 1, -1, 0

CALL gl End
CALL RefreshVi ew

VAI'T

" Triangle

CALL

Cl ear Vi ew eyeX ,
upZ

Y,

eyeY , eyeZ ,

CALL gl Begin GL. TRI ANGLES

CALL
CALL
CALL
CALL
CALL
CALL

gl Colordafv 1, 0, 0, 1
gl Vertex -1, -1, O
glColordfv O, 12, 0, 1
gl Vertex 0, 1, O

gl Colordfv O, 0, 1, 1
gl Vertex 1, -1, O

CALL gl End
CALL RefreshVi ew

VAI'T

CALL

Cl ear Vi ew eyeX ,
upZ

Y,

Squar e

eyeY , eyeZ ,

CALL gl Begin G.. QUADS

center X ,

center X ,

center X ,

centeryY ,

centeryY ,

centery ,

centerZ , upX , up
centerZ , upX , up
centerZ , upX , up

page 3/4



Liberty BASIC Programmer's Encyc

CALL gl Color4fv 12, 0, 0, 1
CALL gl Vertex -1, -1, O
CALL gl Color4fv O, 12, 0, 1
CALL gl Vertex -1, 1, O
CALL gl Color4afv 0O, O, 1, 1
CALL gl Vertex 1, 1, O
CALL gl Color4fv O, O, 0, 1
CALL gl Vertex 1, -1, O

CALL gl End

CALL RefreshVi ew

VAI T

Have fun and do some experimenting until the next lesson, Moving objects around the screen

page 4 /4


/OpenGL3D_2
http://www.tcpdf.org

	OpenGL3D_1

