Liberty BASIC Programmer's Encyc

OpenGL 3D Graphics in Liberty BASIC

Lesson Six: Creating Shapes

by Robert McAllister

As mentioned in lesson 1, OpenGL only has functions for making a few basic surfaces. This leaves it up to
the programer to build the shapes we need using these available functions. Luckily Liberty BASIC makes
this a little less painful for us with subroutines.

But first, read this quote from the OpenGL Redbook:

A normal vector (or normal, for short) is a vector that points in a direction that's perpendicular to a surface.
For a flat surface, one perpendicular direction suffices for every point on the surface, but for a general
curved surface, the normal direction might be different at each point. With OpenGL, you can specify a
normal for each vertex. Vertices might share the same normal, but you can't assign normals anywhere other
than at the vertices.

An object's normal vectors define the orientation of its surface in space - in particular, its orientation relative
to light sources. These vectors are used by OpenGL to determine how much light the object receives at its
vertices. Lighting - a large topic by itself - is the subject of Chapter 6, and you might want to review the
following information after you've read that chapter. Normal vectors are discussed briefly here because you
generally define normal vectors for an object at the same time you define the object's geometry.

You use giNormal*() to set the current normal to the value of the argument passed in. Subsequent calls to
glVertex*() cause the specified vertices to be assigned the current normal...

As this quote mentions, lighting is a large topic so I'm not going to dig to far into it. In the [Initialize]
branch of the program you will find these two lines of code:

CALL gl Enabl e GL. LI GHTI NG
CALL gl Enable G.. LI GHTO

The first line enables lighting in general and the second line adds a light to the scene. Unless you plan on
doing some special effects, these two lines along with 'Normal' calls are all you need to light up your scene.

This bit of code demostrates how to create a cube with a call to a subroutine, and how the sub applies the
normals to properly light it up. Run it as is and you will notice that most of the cube appears black. Un-
comment the 6 "CALL gINormal..." lines and try it again. (Note: If you receive a "Cannot call undefined
sub" error, you will need to download the latest version of the program from page one. I forgot to include
the glNormal sub in the original version.)

page 1/6

Liberty BASIC Programmer's Encyc

" build a cube and spin it

CALL
Cl earView eyeX , eyeY , eyeZ , centerX , centerY , centerZ , upX, up
Y , upZ
Wdth = 1.5
Height = 1.5
Depth = 1.5
CubeCenterX = 0
CubeCenterY = 0
CubeCenterzZ = 0
Red = .2
Geen = .1
Blue = .1

CALL gl GenLists 1

CALL gl NewList 1 , 4865

CALL
Bui | dCube Wdth , Height , Depth , CubeCenterX , CubeCenterY , CubeCe
nterZ , Red , Geen , Blue

CALL gl EndLi st

FORa =1 TO 360

CALL
Cl earView eyeX , eyeY , eyeZ , centerX , centerY , centerZ , upX, up
Y , upZ

CALL gl Rotatef a , 1, 0, O

"CALL gl Rotatef a , 0, 1, O

CALL gl Rotatef a , 0, 0, 1

CALL gl CallList 1

CALL RefreshVi ew
CALL Pause 15
NEXT a

VAI'T

SuUB Buil dCube W, H, D, ¢cX, ¢cY, cZ, r , g, b

" build a cube and spin it
CALL gl Color4afvr , g, b, 1
GL. QUADS=7

"front

CALL gl Begin G.. QUADS

"CALL gl Normal cX-(W2),cY-(H2),czZ+(D2) , cX-(W2),cY+(H 2),czZ+(D 2)
, CX+(W2),cY+(H 2),cz+(D 2)

page2/6

Liberty BASIC Programmer's Encyc

CALL gl Vertex
CALL gl Vertex
CALL gl Vertex
CALL gl Vertex
CALL gl End
' back

cX-(W2)
CX+(W 2)
cX+(W2)
cX-(W2)

CALL gl Begi n G.. QUADS

" CALL gl Nor mal

, cX-(W2),cY-(H2),cz-(D2)

CALL gl Vertex
CALL gl Vertex
CALL gl Vertex
CALL gl Vertex
CALL gl End
"left

cX+(W2)
cX-(W2)
cX-(W2)
CX+(W 2)

CALL gl Begin G.. QUADS

" CALL gl Nor mal

, CX-(W2),cY-(H2),cz+(D 2)

CALL gl Vertex
CALL gl Vertex
CALL gl Vertex
CALL gl Vertex
CALL gl End
"right

cX-(W2)
cX-(W2)
cX-(W2)
cX-(W2)

CALL gl Begi n G.. QUADS

" CALL gl Nor mal

, CX+(W2),cY-(H2),cZ (D 2)

CALL gl Vertex
CALL gl Vertex
CALL gl Vertex
CALL gl Vertex
CALL gl End
"top

cX+(W2)
CX+(W 2)
cX+(W2)
CX+(W 2)

CALL gl Begin G.. QUADS

" CALL gl Nor mal

. cX+(W2), cY+H(H 2), cZ- (D 2)

CALL gl Vertex
CALL gl Vertex
CALL gl Vertex
CALL gl Vertex
CALL gl End
" bottom

cX-(W2)
cX-(W2)
cX+(W2)
CX+(W 2)

CX+(W2),cY+(H 2),

cX-(W2),cY+(H 2),

CX+(W2),cY+(H 2),

cX-(W2),cY+(H 2),

cY+(H 2)
cY+(H 2)
cY-(H 2)
cY-(H 2)

cZ- (D 2)

cY+(H 2)
cY+(H 2)
cY-(H 2)
cY-(H 2)

cZ- (D 2)

cY+(H 2)
cY+(H 2)
cY-(H 2)
cY-(H 2)

cZ+(D 2)

cY+(H 2)
cY+(H 2)
cY-(H 2)
cY-(H 2)

cZ+(D 2)

cY+(H 2)
cY+(H 2)
cY+(H 2)
cY+(H 2)

cZ+(D 2)
cZ+(D 2)
cZ+(D 2)
cZ+(D 2)

cX-(W2)

cZ- (D 2)
cZ- (D 2)
cZ- (D 2)
cZ- (D 2)

cX-(W2)

cZ- (D 2)
cZ+(D 2)
cZ+(D 2)
cZ- (D 2)

cX+(W2)

cZ+(D 2)
cZ- (D 2)
cZ- (D 2)
cZ+(D 2)

cX-(W2)

cZ+(D 2)
cZ- (D 2)
cZ- (D 2)
cZ+(D 2)

,cY+(H 2),cZ- (D 2)

, CY+(H 2), cz+(D 2)

,cY+(H 2),cZ- (D 2)

,cY+(H 2),cZ- (D 2)

page 3/6

Liberty BASIC Programmer's Encyc

CALL gl Begi n G.. QUADS

"CALL gl Normal cX-(W2),cY-(H2),cZ+(D2) , cX+(W2),cY-(H 2),czZ+(D 2)
, CX+(W2),cY-(H2),cZ (D 2)
CALL gl Vertex cX-(W2) , cY-(H2) , cz+(D 2)
CALL gl Vertex cX+(W2) , cY-(H2) , cz+(D 2)
CALL gl Vertex cX+(W2) , cY-(H2) , czZ- (D 2)
CALL gl Vertex cX-(W2) , cY-(H2) , czZ- (D2
CALL gl End

END SUB

In the [Initialize] branch you will find "CALL glEnable GL.NORMALIZE". Normals need to have a
length of 1 to work properly. In other words, they should be 1 unit above the surface that is being created.
With "GL.NORMALIZE" enabled, OpenGL automatically corrects their length.

The sub "gINormal" takes 3 consecutive clockwise (from the front) vertices for the surface, calculates the
normal vector and then makes the call to "glNormal3d". To keep it simple, I always create my surfaces in a
clockwise direction and then use the values from the first 3 glVertex calls.

This code will create a cylinder or oval, depending on the sizes entered. Can you figure out how to add a
top and bottom to the cylinder using triangles? Hint: all the values are already being calculated for you.

build a cylinder

CALL
Cl earView eyeX , eyeY , eyeZ , centerX , centerY , centerZ , upX, up
Y , upZ

Angle = 0
Wdth =1
Depth = .75
Height =1

Oval CenterX = 0
Oval CenterY = 0
Oval CenterZz = 0
Red = .5

Geen =0

Blue = 0

Sides = 120

CALL gl GenLists 1
CALL gl NewList 1 , 4865
CALL
Bui | dCyl i nder Angle , Wdth , Depth , Height , Oval CenterX , Oval Cent

page 4 /6

Liberty BASIC Programmer's Encyc

erY, OvalCenterZ, Red , G een , Blue , Sides

CALL gl EndLi st

FORa =1 TO 360
CALL

Cl earView eyeX , eyeY , eyeZ , centerX , centerY ,

Y , upZ
CALL gl Rotatef a , 1, 0, O
CALL gl Rotatef a , 0, 1, O
"CALL gl Rotatef a , 0, 0, 1
CALL gl CallList 1

CALL RefreshVi ew
CALL Pause 15
NEXT a

VAI'T

SUB Bui | dCylinder Angle , W, D, H, cX,
CALL gl Color4afv R, G, B, 1
G.. QUADS = 7
GL. TRI ANGLES = 4
Pl = 3.14159265

sin.angle = Sin(Angle * PI / 180)
cos. angl e Cos(Angle * PI / 180)

theta = 0
dtheta = 2 * PI |/ Sides

XOval = W* Cos(theta)
YOval = D * Sin(theta)

X1 = ¢cX + XOval * cos.angle + YOval * sin.angle
Z1l = cZ - XOval * sin.angle + YOval * cos.angle

VWhile theta < 2 * PI

t het a theta + dtheta

XOval = W* Cos(theta)
YOval D * Sin(theta)

X2 = ¢cX + XOval * cos.angle + YOval
z2 cZ - XOval * sin.angle + YOval

* sin.angle
* cos. angl e

center”Z

upX , up

page5/6

Liberty BASIC Programmer's Encyc

, 21,

CALL gl Begin G..
CALL gl Nor nal

X2, cY-(H2) ,
CALL gl Vertex

CALL gl Nor nal
X2 , cY+(H2) ,
CALL gl Vertex

CALL gl Nor nal
X1, cY+(H2) ,
CALL gl Vertex

CALL gl Nor nal
X1, cY-(H2) ,

CALL gl Vertex
CALL gl End

X1 X2
1 = 72

VIEND

END SUB

In the next lesson we will learn about "Texture mapping

QUADS

X1
Z2
X1

X1
Z2
X2

X2
Z1
X2

X2
Z1
X1

cY+(H 2)
cY-(H 2)
cY- (H 2)
cY-(H 2)
cY-(H 2)
cY+(H 2)
cY+(H 2)

cY+(H 2)

"

Z1

Z1

Z1

Z2

Z2

Z2

Z2

Z1

X1

X2

X2

X1

cY-(H 2)

cY-(H 2)

cY+(H 2)

cY+(H 2)

page 6/6

/OpenGL3D_7
http://www.tcpdf.org

	OpenGL3D_6

