
Liberty BASIC Programmer's Encyc

OpenGL 3D Graphics in Liberty BASIC

Lesson Six: Creating Shapes

by Robert McAllister

As mentioned in lesson 1, OpenGL only has functions for making a few basic surfaces. This leaves it up to
the programer to build the shapes we need using these available functions. Luckily Liberty BASIC makes
this a little less painful for us with subroutines.

But first, read this quote from the OpenGL Redbook:
A normal vector (or normal, for short) is a vector that points in a direction that's perpendicular to a surface.
For a flat surface, one perpendicular direction suffices for every point on the surface, but for a general
curved surface, the normal direction might be different at each point. With OpenGL, you can specify a
normal for each vertex. Vertices might share the same normal, but you can't assign normals anywhere other
than at the vertices.

An object's normal vectors define the orientation of its surface in space - in particular, its orientation relative
to light sources. These vectors are used by OpenGL to determine how much light the object receives at its
vertices. Lighting - a large topic by itself - is the subject of Chapter 6, and you might want to review the
following information after you've read that chapter. Normal vectors are discussed briefly here because you
generally define normal vectors for an object at the same time you define the object's geometry.

You use glNormal*() to set the current normal to the value of the argument passed in. Subsequent calls to
glVertex*() cause the specified vertices to be assigned the current normal...

As this quote mentions, lighting is a large topic so I'm not going to dig to far into it. In the [Initialize]
branch of the program you will find these two lines of code:

 CALL glEnable GL.LIGHTING
 CALL glEnable GL.LIGHT0

The first line enables lighting in general and the second line adds a light to the scene. Unless you plan on
doing some special effects, these two lines along with 'Normal' calls are all you need to light up your scene.

This bit of code demostrates how to create a cube with a call to a subroutine, and how the sub applies the
normals to properly light it up. Run it as is and you will notice that most of the cube appears black. Un-
comment the 6 "CALL glNormal..." lines and try it again. (Note: If you receive a "Cannot call undefined
sub" error, you will need to download the latest version of the program from page one. I forgot to include
the glNormal sub in the original version.)

 page 1 / 6

Liberty BASIC Programmer's Encyc

 ' build a cube and spin it
 CALL
 ClearView eyeX , eyeY , eyeZ , centerX , centerY , centerZ , upX , up
Y , upZ
 Width = 1.5
 Height = 1.5
 Depth = 1.5
 CubeCenterX = 0
 CubeCenterY = 0
 CubeCenterZ = 0
 Red = .2
 Green = .1
 Blue = .1
 CALL glGenLists 1
 CALL glNewList 1 , 4865
 CALL
 BuildCube Width , Height , Depth , CubeCenterX , CubeCenterY , CubeCe
nterZ , Red , Green , Blue
 CALL glEndList

 FOR a = 1 TO 360
 CALL
 ClearView eyeX , eyeY , eyeZ , centerX , centerY , centerZ , upX , up
Y , upZ
 CALL glRotatef a , 1 , 0 , 0
 'CALL glRotatef a , 0 , 1 , 0
 CALL glRotatef a , 0 , 0 , 1
 CALL glCallList 1

 CALL RefreshView
 CALL Pause 15
 NEXT a

 WAIT

SUB BuildCube W , H , D , cX , cY , cZ , r , g , b

 ' build a cube and spin it
 CALL glColor4fv r , g , b , 1
 GL.QUADS=7
 'front
 CALL glBegin GL.QUADS

'CALL glNormal cX-(W/2),cY-(H/2),cZ+(D/2) , cX-(W/2),cY+(H/2),cZ+(D/2)
 , cX+(W/2),cY+(H/2),cZ+(D/2)

 page 2 / 6

Liberty BASIC Programmer's Encyc

 CALL glVertex cX-(W/2) , cY+(H/2) , cZ+(D/2)
 CALL glVertex cX+(W/2) , cY+(H/2) , cZ+(D/2)
 CALL glVertex cX+(W/2) , cY-(H/2) , cZ+(D/2)
 CALL glVertex cX-(W/2) , cY-(H/2) , cZ+(D/2)
 CALL glEnd
 'back
 CALL glBegin GL.QUADS

'CALL glNormal cX+(W/2),cY+(H/2),cZ-(D/2) , cX-(W/2),cY+(H/2),cZ-(D/2)
 , cX-(W/2),cY-(H/2),cZ-(D/2)
 CALL glVertex cX+(W/2) , cY+(H/2) , cZ-(D/2)
 CALL glVertex cX-(W/2) , cY+(H/2) , cZ-(D/2)
 CALL glVertex cX-(W/2) , cY-(H/2) , cZ-(D/2)
 CALL glVertex cX+(W/2) , cY-(H/2) , cZ-(D/2)
 CALL glEnd
 'left
 CALL glBegin GL.QUADS

'CALL glNormal cX-(W/2),cY+(H/2),cZ-(D/2) , cX-(W/2),cY+(H/2),cZ+(D/2)
 , cX-(W/2),cY-(H/2),cZ+(D/2)
 CALL glVertex cX-(W/2) , cY+(H/2) , cZ-(D/2)
 CALL glVertex cX-(W/2) , cY+(H/2) , cZ+(D/2)
 CALL glVertex cX-(W/2) , cY-(H/2) , cZ+(D/2)
 CALL glVertex cX-(W/2) , cY-(H/2) , cZ-(D/2)
 CALL glEnd
 'right
 CALL glBegin GL.QUADS

'CALL glNormal cX+(W/2),cY+(H/2),cZ+(D/2) , cX+(W/2),cY+(H/2),cZ-(D/2)
 , cX+(W/2),cY-(H/2),cZ-(D/2)
 CALL glVertex cX+(W/2) , cY+(H/2) , cZ+(D/2)
 CALL glVertex cX+(W/2) , cY+(H/2) , cZ-(D/2)
 CALL glVertex cX+(W/2) , cY-(H/2) , cZ-(D/2)
 CALL glVertex cX+(W/2) , cY-(H/2) , cZ+(D/2)
 CALL glEnd
 'top
 CALL glBegin GL.QUADS

'CALL glNormal cX-(W/2),cY+(H/2),cZ+(D/2) , cX-(W/2),cY+(H/2),cZ-(D/2)
 , cX+(W/2),cY+(H/2),cZ-(D/2)
 CALL glVertex cX-(W/2) , cY+(H/2) , cZ+(D/2)
 CALL glVertex cX-(W/2) , cY+(H/2) , cZ-(D/2)
 CALL glVertex cX+(W/2) , cY+(H/2) , cZ-(D/2)
 CALL glVertex cX+(W/2) , cY+(H/2) , cZ+(D/2)
 CALL glEnd
 'bottom

 page 3 / 6

Liberty BASIC Programmer's Encyc

 CALL glBegin GL.QUADS

'CALL glNormal cX-(W/2),cY-(H/2),cZ+(D/2) , cX+(W/2),cY-(H/2),cZ+(D/2)
 , cX+(W/2),cY-(H/2),cZ-(D/2)
 CALL glVertex cX-(W/2) , cY-(H/2) , cZ+(D/2)
 CALL glVertex cX+(W/2) , cY-(H/2) , cZ+(D/2)
 CALL glVertex cX+(W/2) , cY-(H/2) , cZ-(D/2)
 CALL glVertex cX-(W/2) , cY-(H/2) , cZ-(D/2)
 CALL glEnd

END SUB

In the [Initialize] branch you will find "CALL glEnable GL.NORMALIZE". Normals need to have a
length of 1 to work properly. In other words, they should be 1 unit above the surface that is being created.
With "GL.NORMALIZE" enabled, OpenGL automatically corrects their length.

The sub "glNormal" takes 3 consecutive clockwise (from the front) vertices for the surface, calculates the
normal vector and then makes the call to "glNormal3d". To keep it simple, I always create my surfaces in a
clockwise direction and then use the values from the first 3 glVertex calls.

This code will create a cylinder or oval, depending on the sizes entered. Can you figure out how to add a
top and bottom to the cylinder using triangles? Hint: all the values are already being calculated for you.

 ' build a cylinder
 CALL
 ClearView eyeX , eyeY , eyeZ , centerX , centerY , centerZ , upX , up
Y , upZ
 Angle = 0
 Width = 1
 Depth = .75
 Height = 1
 OvalCenterX = 0
 OvalCenterY = 0
 OvalCenterZ = 0
 Red = .5
 Green = 0
 Blue = 0
 Sides = 120

 CALL glGenLists 1
 CALL glNewList 1 , 4865
 CALL
 BuildCylinder Angle , Width , Depth , Height , OvalCenterX , OvalCent

 page 4 / 6

Liberty BASIC Programmer's Encyc

erY , OvalCenterZ , Red , Green , Blue , Sides
 CALL glEndList

 FOR a = 1 TO 360
 CALL
 ClearView eyeX , eyeY , eyeZ , centerX , centerY , centerZ , upX , up
Y , upZ
 CALL glRotatef a , 1 , 0 , 0
 CALL glRotatef a , 0 , 1 , 0
 'CALL glRotatef a , 0 , 0 , 1
 CALL glCallList 1

 CALL RefreshView
 CALL Pause 15
 NEXT a

 WAIT

SUB BuildCylinder Angle , W , D , H , cX , cY , cZ , R , G , B , Sides
 CALL glColor4fv R , G , B , 1
 GL.QUADS = 7
 GL.TRIANGLES = 4
 PI = 3.14159265

 sin.angle = Sin(Angle * PI / 180)
 cos.angle = Cos(Angle * PI / 180)

 theta = 0
 dtheta = 2 * PI / Sides

 XOval = W * Cos(theta)
 YOval = D * Sin(theta)
 X1 = cX + XOval * cos.angle + YOval * sin.angle
 Z1 = cZ - XOval * sin.angle + YOval * cos.angle

 While theta < 2 * PI

 theta = theta + dtheta

 XOval = W * Cos(theta)
 YOval = D * Sin(theta)

 X2 = cX + XOval * cos.angle + YOval * sin.angle
 Z2 = cZ - XOval * sin.angle + YOval * cos.angle

 page 5 / 6

Liberty BASIC Programmer's Encyc

 CALL glBegin GL.QUADS
 CALL glNormal X1 , cY+(H/2) , Z1 , X1 , cY-(H/2)
 , Z1 , X2 , cY-(H/2) , Z2
 CALL glVertex X1 , cY-(H/2) , Z1

 CALL glNormal X1 , cY-(H/2) , Z1 , X2 , cY-(H/2)
 , Z2 , X2 , cY+(H/2) , Z2
 CALL glVertex X2 , cY-(H/2) , Z2

 CALL glNormal X2 , cY-(H/2) , Z2 , X2 , cY+(H/2)
 , Z2 , X1 , cY+(H/2) , Z1
 CALL glVertex X2 , cY+(H/2) , Z2

 CALL glNormal X2 , cY+(H/2) , Z2 , X1 , cY+(H/2)
 , Z1 , X1 , cY-(H/2) , Z1
 CALL glVertex X1 , cY+(H/2) , Z1
 CALL glEnd

 X1 = X2
 Z1 = Z2

 WEND
END SUB

In the next lesson we will learn about "Texture mapping"

Powered by TCPDF (www.tcpdf.org)

 page 6 / 6

/OpenGL3D_7
http://www.tcpdf.org

	OpenGL3D_6

