
Liberty BASIC Programmer's Encyc

PlgBlt
-

 Alyce
Parallelogram Blitting | PlgBlt | Demo One | Masking | Masking Demo Some text below is copied from the
Microsoft Developers Network Library.

For an eBook or printed book on using the API with Liberty BASIC, see:
APIs for Liberty BASIC

Parallelogram Blitting
The PlgBlt function performs a bit-block transfer of the bits of color data from the specified rectangle in
the source device context to the specified parallelogram in the destination device context.

Bitmaps are rectangular images. PlgBlt displays a copy of the bitmap skewed into the specified
parallelogram shape.

PlgBlt
The parameters of the PlgBlt function are as follows.

calldll #gdi32, "PlgBlt",_
 hdcDest hdcDest as ulong,_ 'source device context
 lpPoint as struct,_ 'array of points
 memdc as ulong,_ 'destination device context
 nXSrc as long,_ 'upper left x-coord of source
 nYSrc as long,_ 'upper left y-coord of source
 nWidth as long,_ 'width of source
 nHeight as long,_ 'height of source
 hbmMask as ulong,_ 'mask bmp handle, null if not used
 xMask as long,_ 'ulx mask
 yMask as long,_ 'uly mask
 re as long 'nonzero=success

hdcDest: A handle to the destination device context.

lpPoint: A pointer to an array of three points in logical space that identify three corners of the destination
parallelogram. The upper-left corner of the source rectangle is mapped to the first point in this array, the
upper-right corner to the second point in this array, and the lower-left corner to the third point. The lower-

 page 1 / 8

https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce
http://alycesrestaurant.com/apilb/index.htm

Liberty BASIC Programmer's Encyc

right corner of the source rectangle is mapped to the implicit fourth point in the parallelogram.

hdcSrc: A handle to the source device context.

nXSrc: The x-coordinate, in logical units, of the upper-left corner of the source rectangle.

nYSrc: The y-coordinate, in logical units, of the upper-left corner of the source rectangle.

nWidth: The width, in logical units, of the source rectangle.

nHeight: The height, in logical units, of the source rectangle.

hbmMask: A handle to an optional monochrome bitmap that is used to mask the colors of the source
rectangle.

xMask: The x-coordinate, in logical units, of the upper-left corner of the monochrome bitmap.

yMask: The y-coordinate, in logical units, of the upper-left corner of the monochrome bitmap.

Return value: If the function succeeds, the return value is nonzero.

Not all devices support the PlgBlt function. If the source and destination device contexts represent
incompatible devices, PlgBlt returns an error. When used in a multiple monitor system, both hdcSrc and
hdcDest must refer to the same device or the function will fail.

Demo One
The example below allows the user to open a bitmap file. It is then displayed in a graphicbox in a specified
parallelogram shape. The simple deom does not include a mask.

A picture of George Washington is opened in the demo program. The result looks like this:

 page 2 / 8

Liberty BASIC Programmer's Encyc

 filedialog "Open","*.bmp",bmp$
 if bmp$="" then end
 loadbmp "image",bmp$
 hImage=hbmp("image")

 struct BITMAP,_
 bmType as long,_
 bmWidth As long,_
 bmHeight As long,_
 bmWidthBytes As long,_
 bmPlanes as word,_
 bmBitsPixel as word,_
 bmBits as Long
 length=len(BITMAP.struct)
 calldll #gdi32, "GetObjectA", hImage as ulong,_
 length as long,BITMAP as struct,_
 results as long
 bmpWidth=BITMAP.bmWidth.struct
 bmpHeight=BITMAP.bmHeight.struct

nomainwin
winWide=700:winHigh=500
WindowWidth=winWide+50:WindowHeight=winHigh+50
UpperLeftX=1:UpperLeftY=1

graphicbox #1.g, 0,0,winWide,winHigh
open "Parallelogram Blt" for window as #1
#1 "trapclose [quit]"
#1.g "down;fill lightgray"

h=hwnd(#1.g) 'graphicbox handle

'get device context for window:
calldll #user32, "GetDC",_
 h as ulong,_ 'graphicbox handle
 hdc as ulong 'returns handle to device context

CallDLL #gdi32,"CreateCompatibleDC",_
 hdc as uLong,_
 memdc as uLong

 CallDLL #gdi32,"SelectObject",_
 memdc as uLong,_

 page 3 / 8

Liberty BASIC Programmer's Encyc

 hImage as uLong,_
 oldObject as uLong

STRUCT lpPoint,_
 x1 as long,_ 'ulx
 y1 as long,_ 'uly
 x2 as long,_ 'urx
 y2 as long,_ 'ury
 x3 as long,_ 'llx
 y3 as long 'lly

'The STRUCT must be filled before it can be used in an api call:
 lpPoint.x1.struct = int(winWide/2)
 lpPoint.y1.struct = 0
 lpPoint.x2.struct = winWide
 lpPoint.y2.struct = int(winHigh/2)
 lpPoint.x3.struct = 0
 lpPoint.y3.struct = int(winHigh/2)

calldll #gdi32, "PlgBlt",_
 hdc as ulong,_ 'device context of graphicbox
 lpPoint as struct,_ 'array of points
 memdc as ulong,_ 'memory DC
 0 as long,_ 'ulx source
 0 as long,_ 'uly source
 bmpWidth as long,_ 'width source
 bmpHeight as long,_ 'height source
 0 as ulong,_ 'mask bmp handle, null = not used
 0 as long,_ 'ulx mask
 0 as long,_ 'uly mask
 re as long 'nonzero=success

'method to flush GDI graphics:
'#1.g "getbmp pix 0 0 ";winWide;" ";winHigh
'#1.g "drawbmp pix 0 0;flush"

wait

[quit]
calldll #user32, "ReleaseDC",_
 h as ulong,_ 'window handle
 hdc as ulong,_ 'device context
 ret as long

 CallDLL #gdi32, "DeleteDC",memdc as uLong, r As long
 close #1:end

 page 4 / 8

Liberty BASIC Programmer's Encyc

Masking
If the given bitmask handle identifies a valid monochrome bitmap, the function uses this bitmap to mask
the bits of color data from the source rectangle. If the mask rectangle is smaller than the source and
destination rectangles, the function replicates the mask pattern.

If the bitmask exists, a value of one in the mask indicates that the source pixel color should be copied to
the destination. A value of zero in the mask indicates that the destination pixel color is not to be changed.

Liberty BASIC's loadbmp statement does not load a monochrome bitmap. Instead, we use the API
function LoadImageA. The flags for loading should include the flag for loading from a file and the flag
for a monochrome bitmap. Be sure to use a mask bitmap that contains only white and black. The
LoadImageA function looks like this:

 imagePath$=DefaultDir$;"\plg_mask.bmp"
 flags = _LR_MONOCHROME or _LR_LOADFROMFILE

 calldll #user32, "LoadImageA",_
 0 as ulong,_ 'instance - use 0 for image from file
 imagePath$ as ptr,_ 'path and filename of image
 _IMAGE_BITMAP as long,_ 'type of image
 bmpWidth as long,_ 'desired width
 bmpHeight as long,_ 'desired height
 flags as long,_ 'load flags
 hMask as Ulong 'handle of loaded image

The mask used looks like this:

Masking Demo
The code below looks like this when run:

 page 5 / 8

Liberty BASIC Programmer's Encyc

 filedialog "Open","*.bmp",bmp$
 if bmp$="" then end
 loadbmp "image",bmp$
 hImage=hbmp("image")

 struct BITMAP,_
 bmType as long,_
 bmWidth As long,_
 bmHeight As long,_
 bmWidthBytes As long,_
 bmPlanes as word,_
 bmBitsPixel as word,_
 bmBits as Long
 length=len(BITMAP.struct)
 calldll #gdi32, "GetObjectA", hImage as ulong,_
 length as long,BITMAP as struct,_
 results as long
 bmpWidth=BITMAP.bmWidth.struct
 bmpHeight=BITMAP.bmHeight.struct

 'need monochrome bmp
 'create black and white bmp and save to disk
 'use LoadImageA with monochrome flag set
 ' to assure handle to monochrome bmp

 imagePath$=DefaultDir$;"\plg_mask.bmp"
 flags = _LR_MONOCHROME or _LR_LOADFROMFILE

 calldll #user32, "LoadImageA",_
 0 as ulong,_ 'instance - use 0 for image from file
 imagePath$ as ptr,_ 'path and filename of image
 _IMAGE_BITMAP as long,_ 'type of image

 page 6 / 8

Liberty BASIC Programmer's Encyc

 bmpWidth as long,_ 'desired width
 bmpHeight as long,_ 'desired height
 flags as long,_ 'load flags
 hMask as Ulong 'handle of loaded image

nomainwin
winWide=700:winHigh=500
WindowWidth=winWide+50:WindowHeight=winHigh+50
UpperLeftX=1:UpperLeftY=1

graphicbox #1.g, 0,0,winWide,winHigh
open "Masked Parallelogram Blt" for window as #1
#1 "trapclose [quit]"
#1.g "down;fill lightgray"

h=hwnd(#1.g) 'graphicbox handle

'get device context for window:
calldll #user32, "GetDC",_
 h as ulong,_ 'graphicbox handle
 hdc as ulong 'returns handle to device context

CallDLL #gdi32,"CreateCompatibleDC",_
 hdc as uLong,_
 memdc as uLong

 CallDLL #gdi32,"SelectObject",_
 memdc as uLong,_
 hImage as uLong,_
 oldObject as uLong

STRUCT lpPoint,_
 x1 as long,_ 'ulx
 y1 as long,_ 'uly
 x2 as long,_ 'urx
 y2 as long,_ 'ury
 x3 as long,_ 'llx
 y3 as long 'lly

'The STRUCT must be filled before it can be used in an api call:
 lpPoint.x1.struct = int(winWide/2)
 lpPoint.y1.struct = 0
 lpPoint.x2.struct = winWide
 lpPoint.y2.struct = int(winHigh/2)
 lpPoint.x3.struct = 0

 page 7 / 8

Liberty BASIC Programmer's Encyc

 lpPoint.y3.struct = int(winHigh/2)

calldll #gdi32, "PlgBlt",_
 hdc as ulong,_ 'device context of graphicbox
 lpPoint as struct,_ 'array of points
 memdc as ulong,_ 'memory DC
 0 as long,_ 'ulx source
 0 as long,_ 'uly source
 bmpWidth as long,_ 'width source
 bmpHeight as long,_ 'height source
 hMask as ulong,_ 'mask monochrome bmp handle
 0 as long,_ 'ulx mask
 0 as long,_ 'uly mask
 re as long 'nonzero=success

'method to flush GDI graphics:
'#1.g "getbmp pix 0 0 ";winWide;" ";winHigh
'#1.g "drawbmp pix 0 0;flush"

wait

[quit]
calldll #user32, "ReleaseDC",_
 h as ulong,_ 'window handle
 hdc as ulong,_ 'device context
 ret as long

 CallDLL #gdi32, "DeleteDC",memdc as uLong, r As long
 close #1:end

GDI Tutorials Home

Powered by TCPDF (www.tcpdf.org)

 page 8 / 8

/GDI
http://www.tcpdf.org

	PlgBlt

