
Liberty BASIC Programmer's Encyc

Easy Functions for Plotting 3D Objects

Tomas J. Nally -
 steelweaver52

This preliminary article originally appeared in the Liberty BASIC Newsletter, Issue #113. This article is not
technically a part of Tom's Liberty BASIC Wire Frame Library, but this article did serve as the impetus for
LBWF Library. Because this article is referenced in the LBWF Library series, it was thought best to include
this article as part of the series. Easy Functions for Plotting 3D Objects is reprinted here with the permission
of the author.

View the source code for the functions described in this article!

Making Humble CAD Technology Usable

In late 2002 I published version 1.0 of Humble CAD, which is a Liberty Basic program for drawing "wire
model images" of 3D objects. The reaction was favorable among Liberty Basic users, and I published
versions 1.5 and 1.5.1 in early 2003. The latter version is available for download at two locations: LB
Downloads, and the files area of the Liberty BASIC Yahoo group (HumCAD151.zip). All versions of
Humble CAD have been released as open source.

Screenshot: HumbleCAD v1.5.1

But, just because the source code is "open" doesn't mean that the code is easy to extract and decipher for
use in one's own programs. In fact, the most interesting part of Humble CAD's code--the vector math that
converts all of the 3D data into ready-to-plot 2D format--is a little too disorganized and complex to be
extracted for use in someone else's programs. The open source advantage, then, is wasted. Humble CAD
contains good technology, but the accessibility to this technology is poor.

This article and demo attempts to correct this lack of accessibility to Humble CAD's code. Specifically,
two functions are provided with this article--ScreenX() and ScreenY() (source code availabe here)
--which accept coordinates of points in 3D space, and return the equivalent 2D screen coordinates of the
same point.

Please be aware that numerous arguements must be passed to these functions in order for them to work
properly. As you read below, however, I'm sure you will appreciate the logic and necessity of this.

 page 1 / 5

https://www.wikispaces.com/user/view/steelweaver52
https://www.wikispaces.com/user/view/steelweaver52
http://babek.info/libertybasicfiles/lbnews/nl113/plot3d.htm
/LBWFCh01
/LBWFCh01
/LBWFCh01
/Plot3DSourceCode
http://www.libertybasic.com
http://www.libertybasic.com
http://lbdownloads.com/Uti.htm
http://lbdownloads.com/Uti.htm
http://groups.yahoo.com/group/libertybasic/files/
/Plot3DSourceCode

Liberty BASIC Programmer's Encyc

The Arguments Required by ScreenX() and ScreenY()

ScreenX() and ScreenY() each require twelve arguments. In fact, both functions require the exact same
arguments! The only difference between the functions is that one returns the X-coordinate of the 3D
point's projection onto the LB GRAPHICBOX, while the other returns the Y-coordinate. The only reason
why two functions are required is because a function only returns a single value. If we could persuade a
function to return two values, then this operation could be accomplished with a single function.

Without further ado, here is a list of the twelve arguments required by ScreenX() and ScreenY(). It will be
followed by a discussion of the importance of these arguments.

1. XX - The X-coordinate of the node in space.
2. YY - The Y-coordinate of the node in space.
3. ZZ - The Z-coordinate of the node in space.
4. CamX - (Think "Camera-X") The X-coordinate of the camera.
5. CamY - (Think "Camera-Y") The Y-coordinate of the camera.
6. CamZ - (Think "Camera-Z") The Z-coordinate of the camera.
7. CtrX - (Think "Center-X") The X-coordinate of the point in space where your camera is
pointed. I often call this point the "Viewing Center".
8. CtrY - (Think "Center-Y") The Y-coordinate of the point in space where your camera is pointed.
9. CtrZ - (Think "Center-Z") The Z-coordinate of the point in space where your camera is pointed.
10. ScrCtrX - (Think "Screen Center-X") The X-coordinate of the GRAPHICBOX point which
corresponds to the Viewing Center.
11. ScrCtrY - (Think "Screen Center-Y") The Y-coordinate of the GRAPHICBOX point which
corresponds to the Viewing Center.
12. Scale - A value that allows you to apply "size control" to the plotted objects in the LB
GRAPHICBOX.

Arguments XX, YY and ZZ

These three variables are the X-, Y-, and Z-coordinates of the node in space that we wish to plot.
Understand, though, that plotting a single node by itself has little or no value. In this particular demo, the
importance of a node is that it serves as one of the two endpoints of a line. The value of a line is that we
can arrange numerous lines in space to make representations of objects. For instance, we can arrange 8
lines in space to form a pyramid. Four lines would form the square base of the pyramid, while the
remaining for four lines would extend from the corners of the base up to the apex of the pyramid.

Arguments CamX, CamY and CamZ

 page 2 / 5

Liberty BASIC Programmer's Encyc

These three variables are the X-, Y-, and Z-coordinates of the camera location. The camera location is the
point in space where we view our objects. You can also think of it as the location of your eye. On other
occasions, I've named these same variables Xeye, Yeye and Zeye. However, it looks like the convention is
to refer to this point as the camera location rather than your eye location.

Arguments CtrX, CtrY and CtrZ

These three variables are the X-, Y-, and Z-coordinates of the point in space where you are pointing the
camera. I typically call this point the viewing center, or just the center. Often, though not always, you
may want to point the camera at the geometric center of your collection of objects.

Arguments ScrCtrX and ScrCtrY

These two variables are the X- and Y-coordinates of that point in the LB GRAPHICBOX which
corresponds to the viewing center. For instance, if you want your objects to appear centered in the
GRAPHICBOX, then ScrCtrX and ScrCtrY should be the centerpoint of the GRAPHICBOX. That is, if
your GRAPHICBOX is 400 x 400, then

ScrCtrX = 200 and ScrCtrY = 200

Argument Scale

The usefulness of ScreenX() and ScreenY() would be limited if it did not allow you to plot objects that
were very large in scale (say thousands of units long or tall) or very small in scale (less than a unit long or
tall). The Scale variable gives you "size control" over the plot. Of course, you must experiment with the
Scale value until your plots produce objects that are properly sized. Scale can also be used to zoom in
and zoom out when plotting objects.

OK, So What Does the Function Look Like When Used?

Without listing the code of the functions themselves (source code available here), the example below is
just about the simplist implementation of ScreenX() and ScreenY() than can be developed. (Please note
that code to setup the WINDOW and the GRAPHICBOX control is omitted.) In this little code snippet, the

 page 3 / 5

/Plot3DSourceCode

Liberty BASIC Programmer's Encyc

coordinates of two points in space are defined, followed by all the other input arguments of the functions.
ScreenX() and ScreenY() are each called twice: once for the first node in space, once for the second node
in space. Each time ScreenX() or ScreenY() is called, the function returns a screen coordinate. At the end
of the snippet, a line is plotted using the screen coordinates returned by ScreenX() and ScreenY().

XX1 = 5 '
YY1 = 5 '
ZZ1 = 5 'Coordinates of the two
XX2 = 100 'nodes in space
YY2 = 100 '
ZZ2 = 100 '

CamX = 300 '
CamY = 300 'Coordinates of the camera in space
CamZ = 300 '

CtrX = 5 'The "center",
CtrY = 5 'Coordinates of the point where the
CtrZ = 5 'camera is pointing

ScrCtrX = 200 'Coordinates of the GRAPHICBOX point
ScrCtrY = 200 'corresponding to the "center"

Scale = 1 'Define the Scale Factor

'Send all of the arguments to the two functions for the FIRST node.
'sx1 and sy1 become the screen coordinates of Node 1.

sx1 = ScreenX(XX1, YY1, ZZ1, CamX, CamY, CamZ, CtrX, CtrY, CtrZ, ScrCt
rX, ScrCtrY, Scale)
sy1 = ScreenY(XX1, YY1, ZZ1, CamX, CamY, CamZ, CtrX, CtrY, CtrZ, ScrCt
rX, ScrCtrY, Scale)

'Send all of the arguments to the two functions for the SECOND node.
'sx2 and sy2 become the screen coordinates of Node 2.

sx2 = ScreenX(XX2, YY2, ZZ2, CamX, CamY, CamZ, CtrX, CtrY, CtrZ, ScrCt
rX, ScrCtrY, Scale)
sy2 = ScreenY(XX2, YY2, ZZ2, CamX, CamY, CamZ, CtrX, CtrY, CtrZ, ScrCt
rX, ScrCtrY, Scale)

'Draw a line in the GRAPHICBOX between (sx1,sy1) and (sx2,sy2)

print #main.gbox1, "line "; sx1; " "; sy1; " "; sx2; " "; sy2

 page 4 / 5

Liberty BASIC Programmer's Encyc

Demonstration Program: "Plot3D.bas"

OK, I admit that there is nothing impressive about plotting a single line in a GRAPHICBOX. As I indicated
elsewhere, the significance of projecting nodes in 3D space onto a 2D plane is that nodes help define lines,
and lines help define objects.

To help illustrate the usefulness of ScreenX() and ScreenY(), I'm providing a Liberty Basic program
called Plot3D.bas. This program provides 3 pre-built objects. The objects are built from 24 nodes and 36
lines. The window of the application provides a number of textboxes which will allow you to change the
coordinates of the camera, the coordinates of the "center", the coordinates of the "screen center" and the
scale. Begin experimenting by changing these values, one at a time, by small amounts. Then press the
button that says RePlot Objects. Note how the image changes.

Limitations of ScreenX() and ScreenY()

ScreenX() and ScreenY() will not produce good output if the user places the camera in the midst of the
objects (or inside of an object) which we are viewing. This is because ScreenX() and ScreenY() are not
sophisticated enough to know which nodes are "behind" the camera and therefore shouldn't be plotted. If
you wish to try it, start Plot3D.bas and place (CamX, CamY, CamZ) at (-5, 10, 5). Nothing will break, it
will only produce bizarre output.

That limitation aside, feel free to incorporate ScreenX() and ScreenY() into your own programs. Like
Humble CAD, this code is provided as open source.

View the source code for the functions described in this article!

Tom Nally
Steelweaver52@aol.com

Powered by TCPDF (www.tcpdf.org)

 page 5 / 5

http://www.libertybasic.com
/Plot3DSource
/Plot3DSourceCode
mailto:Steelweaver52@aol.com
http://www.tcpdf.org

	Plot3D

