Liberty BASIC Programmer's Encyc

Push Buttons

Alyce

from Liberty BASIC 4 Companion
© 2011, Alyce Watson. All rights reserved.

Push Buttons | Button | Default Button | Non-literals in Button Statements | EVENT HANDLERS |
COLORS I LABEL | FONTS | SETFOCUS | LOCATE | SHOW/HIDE | ENABLE/DISABLE

Button

A push button is a regular button. The user clicks on it to interact with a program. The button on the right
in the image below is a push button.

B (o]

As with all other controls, buttons must be listed in the code before the window is opened. There are two
kinds of buttons in Liberty BASIC, (regular) push buttons and BMPBUTTONS. The command to create
push buttons must begin with the window handle, then a dot and a unique extension. Although the use of
an extension is optional, omitting it isn't recommended, since that limits the program's ability to send
commands to the button. In the following example, the window handle is "#1," and the extension for this
button is ".button1" Here is the format to include a button:

BUTTON #1. buttonl, "lI'ma Button!", [branchLabel], UL,
Xpos, ypos, w dth, height

or

BUTTON #1. buttonl, "I'ma Button!", subName, UL,

Xpos, ypos, w dth, height
The label that appears on the button is written between the quotation marks.

After the button label, the button command must specify the branch label or sub name in the program
where execution should continue when the button is pushed by the user. [branchLabel] or subName

The UL designates a corner of the client area. (Client area is the area of the window that does not include
the titlebar, menu or frame - the workspace of the window.) UL stands for upper left. The button appears
at a distance specified from the upper left corner. The other possibilities are UR (upper right,) LL (lower
left,) and LR (lower right.)

The next number is the X position in relationship to the corner specified. The following number is the Y
position.

page 1/5

https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce
http://alycesrestaurant.com/companion.htm

Liberty BASIC Programmer's Encyc

The last two numbers are optional. Use them to specify the desired width and height of the button for a
uniform look to the buttons in a window. If the program does not specify dimensions, the button is sized
automatically to the correct width and height for the label and font size chosen. If the font size of a button
is changed during program execution, it may be necessary to change the size of the button also with the
LOCATE command, since Liberty BASIC does not automatically resize the button.

Default Button

To create a button in a dialog window that will be activated when the user pushes ENTER, give it the
extension DEFAULT as in this example:

button #1.default, "OK",[do.it], UL, 10, 300

Non-literals in Button Statements

Expressions and variables are also acceptable as parameters in the BUTTON command. Some examples
follow.

buttonwi dth = 2*60

button #1.1, "Open",[open], UL, 10, 20, buttonw dt h, 40
button #1.1, "Edit",[edit], UL, 200, 20, but t onwi dt h, 40

width = 60

hei ght = 25
xOrigin = 10
yOrigin = 10

| abel $ = "Button"
bi t mapFil e$ = "run. bnp"
button #main. si zed, |abel $+" Label!", [click], UL, _
xOrigin+t60, yOrigin, wdth*3, height
brpbutton #main.run, bitmapFile$, [run], UL, xOrigin, yOigin
brnpbut t on #mai n. bug, "bug. bmp”, [bug], UL, xOigin, yOigin?* 4

EVENT HANDLERS

Both branch labels and subs can be used to handle button events. If a sub is used, the handle of the button
is passed into the sub by Liberty BASIC. It is passed in as a string variable. Refer to it by placing the #

page2/5

Liberty BASIC Programmer's Encyc

character in front of this handle variable, as in the demo below:

button #1.b, "dick Me",clickM, UL, 10,10
button #1.c, "Pick Me",[pick], UL, 10, 60
open "duh" for w ndow as #1

wai t

[pi ck]

"enabl e the other button

#1. b "!enabl e"

wai t

Sub clickMe handl e$

"send a command to this button
"using handl e variabl e

#handl e$ "!di sabl e"
End Sub

COLORS

The background color of a button is a system color. It cannot be changed by Liberty BASIC. The user's
default system color for this is called BUTTONFACE by Liberty BASIC. It is not possible to change the
color of the text displayed on the button.

LABEL

The label of a push button can be changed in the course of running the program. Bmpbuttons do not have
labels. To change the label on a button, use this command:

print #1.buttonl, "Changed!"
or

capti on$="Changed!"
print #1.buttonl, caption$

After the command is carried out, the button caption displays the text supplied in the PRINT command.
(Changed!)

page3/5

Liberty BASIC Programmer's Encyc

FONTS

The default font for controls is Ms Sans Serif 8 point. This is the same font most Windows applications
use. A program may change the font that is displayed on buttons. Bmpbuttons cannot accept a FONT
command.

print #w ndow. bttn, "!font facename wi dth height [attributes]”

First designate the font name, then the desired width and height of the font characters in pixels. If the
command designates a value of O for the width, Liberty BASIC automatically supplies the default width
for the chosen font. If a value (or 0) is given for width, the font is sized in pixels. If there is no width
parameter specified, the font is sized in points. There are 72 points in an inch.

Possible attributes are bold, underscore, italic and strikeout. They may be used in any combination and
listed in any order. Adding attributes is completely optional.

If the program cannot match the font exactly, it provides the closest font matching the one specified. If the
desired font name contains blank spaces, you must use an underscore character in place of the spaces when
specifying the face name. Both facename and attributes are case insensitive, so "Arial" is the same as

"arial" and "ARIAL." "BOLD" is the same as "bolD" and "Bold." Here's the button font command as it
appears in a program:

print #1.buttonl, "!font Tinmes_New Roman 0 20 bol d"

SETFOCUS

To cause a button to receive the input focus, issue a \SETFOCUS command:

print #1.buttonl, "!setfocus"”

LOCATE

It is possible to move or resize a button during program execution with the LOCATE statement. After the
locate command is sent to the button, always send a REFRESH command to the window itself, so that the
screen is redrawn to reflect the change. The format is:

page4/5

Liberty BASIC Programmer's Encyc

print #1.buttonl, "locate X Y Wdth Height"
print #1, "refresh”

In a program, it looks like this:

print #1.buttonl, "locate 20 400 100 30"
print #1.button2, "locate 20 400 ";buttonw dth;" "; buttonhei ght
print #1, "refresh”

SHOW/HIDE

To hide a button or show a button:

print #1.buttonl, "!show'
print #1.button2, "!hide"

ENABLE/DISABLE

A button can be disabled, so that it appears grayed-out and the user cannot click it. It can be enabled again
with the ENABLE command:

print #1.buttonl, "!enable"
print #1.button2, "!disable"

Push Buttons | Button | Default Button | Non-literals in Button Statements | EVENT HANDLERS |
COLORS I LABEL | FONTS | SETFOCUS | LOCATE | SHOW/HIDE | ENABLE/DISABLE

page5/5

http://www.tcpdf.org

	PushButtons

