Liberty BASIC Programmer's Encyc

QCard DLL Lesson 6

Lesson 5 Lesson 7

Alyce
QCard DLL Lesson 6 | Keeping Track of Cards on the Table | Checking to see if a card is still on the table.

| Removing a card from the table. | DEMO
See Lesson 1 for QCard DLL and WAV files needed for the demo code.

Keeping Track of Cards on the Table

This demo removes cards from the table after the user clicks on them. If he clicks in the same spot again,
our program knows that the card has already been removed. The program does not procede to the routine
that retrieves the suit and value of the card. It just waits for the user to click somewhere else. If a card has
been removed, it can no longer be accessed.

To accomplish this, we add a second dimension to card array to indicate whether it is on the table or if it
has been removed.

"card(n, 1) =index of card in deck
"card(n, 2)=visible on table? 1l=yes, 0=no

After filling the card array with suits and values, we set each card's second dimension to 1, to indicate that
it is present on the table. We do this quite easily in a FOR...NEXT loop.

[fill CardArray]
"fill card array
‘cards 1 to 52 are in the first deck
‘cards 53 to 104 are in the second deck
‘use cards Jack through King in each suit, first deck
card(1,1)=11 'jack of clubs
card(2,1)=12 ' queen
card(3,1)=13 'Kking
card(4,1)=24 'jack of dianonds
card(5, 1)=25 ' queen
card(6,1)=26 'Kking
card(7,1)=37 'jack of hearts
card(8,1)=38 ' queen

page 1/9

/QCard05
/QCard07
https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce
/QCard01

Liberty BASIC Programmer's Encyc

card(9, 1)=39 'Kking
card(10,1)=50 'jack of spades
card(11,1)=51 'queen
card(12,1)=52 'Kking

'now use second deck, to fill second half of array
for i =1to 12
card(i +12,1)=card(i, 1) +52
next
RETURN

[shuf f | eCar ds]
"first set all cards as visible, card(n,2)=1
for i =1to 24
card(i,2)=1
next

Checking to see if a card is still on the table.

In the routine to see which card is clicked, we also check to see if the card has already been removed. If
the second dimension in the card array for that index is 0, the card has already been removed. If it is 1, it is
still on the table. If it has been removed, we simply wait. If it hasn't, we go on to read the value and do
other stuff.

"if card is not visible (has been renoved), then wait
if card(clickCard, 2)=0 then wait

gosub [readVal ue]
wai t
Removing a card from the table.

If the card has not already been removed, we remove it and set the second dimension of the card array for
that index to 0.

'renove card
call RenmoveCard hBox, card(clickCard, 1)

'set visible to 'off’
card(clickCard, 2)=0

page2/9

Liberty BASIC Programmer's Encyc

In the next lesson we'll remove cards if they match. We now have our methods in place to see if a card is
still on the table, and to retrieve its suit and value, so checking for a match will be easy! Feel free to work
out the method yourself'!

DEMO

See Lesson 1 for QCard DLL and WAV files needed for the demo code.

" An open project card game, begun by Alyce Watson, My 27, 2003.
"Uses (xard32.dll, a freeware library of playing card inages.
"DLL by Stephen Murphy. Qcard32.DLL website:
"http://ww.telusplanet. net/public/stevent

‘new i n cardsé6. bas:

"This deno di spl ays a nessage when cards are clicked,

‘and it renoves the cards.

"If a card has been renpved, it can no |onger be accessed.

"new this tine

' Add second dinension to card array to indicate
"if it is on the table or has been renoved.
"card(n, 1) =index of card in deck

‘card(n, 2)=visible on table? 1=yes, 0=no

di m card(24, 2) ‘array to hold cards

[var Set up]

i =0 i will be our counter var in for/next |oops
desi gn=1 ‘default design is circles

new ndex=0 'used when shuffling

tenmpCard=0 'tenp var used when shuffling

clickCard=0 'index of current card clicked by user

gosub [fill CardArray] "fill array wth card val ues

nomai nw n

W ndoww dt h=640: W ndowHei ght =480
Upper Lef t X=1: Upper Left Y=1

page 3/9

/QCard01

Liberty BASIC Programmer's Encyc

menu #1, "&File", "&New',[new],"E&it", [quit]

menu #1, "&Card Back Design","&Circles",[circles],"&Blue",[blue], _

"&Red", [red], "&\Wount ai n", [nount ai n], " &Pur pl e", [pur pl e],
"MB&usi c", [nusi c]

gr aphi cbox #1.g, 0, 0, 640, 440

open "Menory Card Gane" for wi ndow nf as #1

#1 "trapclose [quit]"

"trap nouse clicks:
#1.g "setfocus; when | eftButtonUp [checkl ndex]"

' get graphi cbox handl e
hBox=hwnd(#1. Q)

"open the dll

open "qcard32.dl " for dll as #gc
"initialize the deck

Call InitializeDeck hBox

[new
Cal | Set Def aul t Val ues
Cal | Set CurrentBack design

"draw a ni ce background
#1.g "down; fill 10 190 225"
#1.g "backcol or 10 190 225"

gosub [shuffl eCards]

"set xy location to start dea

x=10:y=2

for i =1to 24
'set status of all cards to O, which is face down
Call SetCardStatus card(i,1l), O

‘deal cards
Call Deal Card hBox,card(i,1),x,y

x=x+100

i f x>510 then "nove to next row
x=10
y=y+100

end if

pl aywave "card.wav", sync

"pause 100 mlliseconds between cards

page 4/9

Liberty BASIC Programmer's Encyc

call Pause 100
scan

next

wai t

[checkl ndex]
clickCard=0:x=0:y=0 'reset val ues
nk=MouseX : ny=MouseY 'nouse x and y | ocation
"Cards are placed in a grid that is 100x100,
"so it is easy to determine which card is clicked
" by checki ng nmouse position. Card height is about
*100, and width is about 80.
"I ndex of clicked card is placed in var called clickCard
"and x,y locations are placed in vars called x and vy.
' MouseY determ nes row, and MouseX determ nes col um.
sel ect case
case ny<=102 "first row
y=2
if nmx<=90 then clickCard=1: x=10
if (mx>=110) and (nx<=190) then clickCard=2: x=110
if (mx>=210) and (nx<=290) then clickCard=3:x=210
i f (mx>=310) and (nx<=390) then clickCard=4: x=310
if (mx>=410) and (nx<=490) then clickCard=5:x=410
i f (mx>=510) and (nx<=590) then clickCard=6: x=510
case (nmy>=102) and (my<202) 'second row
y=102
if nmx<=90 then clickCard=7:x=10
if (mx>=110) and (nx<=190) then clickCard=8:x=110
if (mx>=210) and (nx<=290) then clickCard=9: x=210
if (mx>=310) and (nx<=390) then clickCard=10: x=310
if (mx>=410) and (nx<=490) then clickCard=11: x=410
if (mx>=510) and (nx<=590) then clickCard=12: x=510
case (nmy>=202) and (my<302) "third row
y=202
if nmx<=90 then clickCard=13: x=10
if (mx>=110) and (nx<=190) then clickCard=14: x=110
if (mx>=210) and (nx<=290) then clickCard=15:x=210
if (mx>=310) and (nx<=390) then clickCard=16: x=310
if (mx>=410) and (nx<=490) then clickCard=17: x=410
i f (mx>=510) and (nx<=590) then clickCard=18: x=510
case (nmy>=302) and (mnmy<402) "fourth row
y=302
if nmx<=90 then clickCard=19: x=10
if (mx>=110) and (nx<=190) then clickCard=20: x=110
if (mx>=210) and (nx<=290) then clickCard=21: x=210

page5/9

Liberty BASIC Programmer's Encyc

if (mx>=310) and (nx<=390) then clickCard=22: x=310
if (mx>=410) and (nx<=490) then clickCard=23: x=410
if (mx>=510) and (nx<=590) then clickCard=24: x=510
case el se
clickCard=0
end sel ect

if clickCard=0 then wait

"if card is not visible (has been renoved), then wait
if card(clickCard, 2)=0 then wait

gosub [readVal ue]
wai t

[readVal ue]
thi sval = Get CardVal ue(card(clickCard, 1))
‘ace=1, deuce=2....jack=11, queen=12, ki ng=13
thisSuit = GetCardSuit(card(clickCard, 1))
"returns 1=C ubs, 2=Di anonds, 3=Hearts, 4=Spades.

'renove card
call RenmoveCard hBox, card(clickCard, 1)

'set visible to 'off’
card(clickCard, 2)=0

nmeg$="Card ";clickCard;" is renoved."
#1.g "place 10 420"

#1.9 "\" ; nseg$; space$(400)

RETURN

"setting new card back doesn't restart gane,

'so new back won't show until new gane is started:
[circles] design=1:goto [setDesign]

[bl ue] design=2:goto [setDesign]

[red] design=3:goto [setDesign]

[mount ai n] desi gn=4: goto [set Design]

[purpl e] design=5:goto [setDesign]

[musi c] design=6:goto [setDesign]

[set Desi gn]
Cal | Set CurrentBack design

page 6/9

Liberty BASIC Programmer's Encyc

"design can be 1,2,3,4,5,6 for 6 possible designs
wai t

[fill CardArray]
"fill card array
‘cards 1 to 52 are in the first deck
‘cards 53 to 104 are in the second deck
"use cards Jack through King in each suit, first deck
card(1,1)=11 'jack of clubs
card(2,1)=12 ' queen
card(3,1)=13 'Kking
card(4,1)=24 'jack of dianonds
card(5, 1)=25 ' queen
card(6, 1)=26 'Kking
card(7,1)=37 'jack of hearts
card(8,1)=38 'queen
card(9,1)=39 'Kking
card(10,1)=50 'jack of spades
card(1l1,1)=51 'queen
card(12,1)=52 'Kking

"now use second deck, to fill second half of array
for i =1to 12
card(i +12, 1)=card(i, 1) +52
next
RETURN

[shuf f | eCar ds]
"first set all cards as visible, card(n,2)=1
for i =1to 24
card(i,2)=1
next

pl aywave "shuffl e.wav", async

"now shuffle cards
for i =1to 24
newl ndex=i nt (rnd(0) *24) +1
tenpCard=card(i,1l) 'tenp var to allow sw tching val ues
card(i, 1) =card(new ndex, 1)
"this index now contains value fromrandom i ndex
card(new ndex, 1) =t enpCar d
"random i ndex now contai ns val ue from ot her index

page 7/9

Liberty BASIC Programmer's Encyc

"now card(i,1l) has switched values with a randomcard in the array
next
pl aywave "shuffle.wav", sync
RETURN

[quit] cl ose #qc:close #1:end

"subs and functions:
Sub Pause ns
'pause ns nunber of mlliseconds
cal 1 dl | #kernel 32, " Sl eep”, _
nms as long, re as void
End Sub

Function GetCardSuit(nC)
"returns 1=Cl ubs, 2=D anonds, 3=Hearts, 4=Spades.
calldll #qgc, "GetCardSuit",nC as |ong, _
Get CardSuit as |ong
End Function

Functi on Get CardVal ue(nQC)
"ace=1, deuce=2....jack=11, queen=12, ki ng=13
cal ldll #qgc, "GetCardValue",nC as |ong, _
Get CardVal ue as | ong
End Function

Sub InitializeDeck hndl e
calldl'l #gc, "InitializeDeck", _
hndl e as ulong,r as |ong
End Sub

Sub Set CardSt atus nC, face
'"nC is nunber of card - 1-52 in first deck and
'53-104 in second deck, if used
"face: 0O=facedown, 1=faceup
calldl'l #gc, "SetCardStatus",nC as |ong, _
face as long,r as void
End Sub

Sub Deal Card hndl e, nC, x,y
"places card on wi ndow whose handle is hndle at x,y
'nC is nunber of card - 1-52 in first deck and
'53-104 in second deck, if used
calldl'l #gc, "Deal Card", hndl e as ul ong, nC as | ong, _

page 8/9

Liberty BASIC Programmer's Encyc

Sub

Sub

Sub

x as long,y as long,r as void
End Sub

Set Current Back nV

'nV can be 1,2,3,4,5,6 for 6 possible designs
calldl'l #gc, "SetCurrentBack",nV as long,r as void
End Sub

Set Def aul t Val ues

"reset all card properties back to their default val ues.
calldll #qgc, "SetDefaultValues",r as void

End Sub

RenoveCard hndl e, nC

‘renoves a card from screen that was

"drawn with Deal Card, replacing screen background
calldll #qgc, "RenpveCard", hndl e as ul ong, _

nC as long,r as void

End Sub

QCard DLL Lesson 6 | Keeping Track of Cards on the Table | Checking to see if a card is still on the table.

| Removing a card from the table. | DEMO

Lesson 5 Lesson 7

page 9/9

/QCard05
/QCard07
http://www.tcpdf.org

	QCard06

