
Liberty BASIC Programmer's Encyc

QCard DLL Lesson 7
Lesson 6 Lesson 8

-
 Alyce

QCard DLL Lesson 7 | Checking for a Match | Two Cards per Turn | Removing Cards at the end of Turn |
Ending the Turn | DEMO
See Lesson 1 for QCard DLL and WAV files needed for the demo code.

Checking for a Match
The game is not yet finished, but getting close. We must now check the two cards chosen by the user to see
if they match. If there is a match, we must remove them from the table, otherwise we must return them to
the face down position.

Two Cards per Turn
Because a memory card game allows the user to see only two card faces at a time, we'll create variables to
keep track of the status of the current turn and the locations of the cards. We'll also keep track of the
number of turns taken and the score. The score will reflect the number of pairs correctly identified by the
player.

cardOne=0 'first card clicked by user
cardTwo=0 'second card clicked by user
cardOneX=0
cardTwoX=0
cardOneY=0
cardTwoY=0 'locations of cards clicked by user
turns=0 'record number of tries made by user
score=0 'record number of matches - 12 is max

This demo allows the user to click one card and then another. It checks to see if they match and removes
them if they do. After two cards are revealed, there is a slight pause to allow the user
to see the result, then the 'turns' variable is incremented by 1.

When the user clicks on a card, we see if it's the first or second card in the turn. If it is the first card, we
set the variables and return control to the user. If it's the second card we'll continue in the routine to check
for a match.

 page 1 / 11

/QCard06
/QCard08
https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce
/QCard01

Liberty BASIC Programmer's Encyc

 'check whether this is first or second card
 if cardOne=0 then
 cardOne=clickCard
 cardOneX=x
 cardOneY=y
 return 'leave first card up and return
 else
 cardTwo=clickCard
 cardTwoX=x
 cardTwoY=y
 end if

We'll turn off the mouse event handler and pause for two seconds to allow the player to see the cards he's
selected.

 #1.g "when leftButtonUp" 'turn off mouse event while pausing
 call Pause 2000 '2 second pause to view cards
 #1.g "setfocus; when leftButtonUp [checkIndex]"

Removing Cards at the end of Turn
We first query the value and suit of the two cards, then remove them from the table. It is important to
remove cards before dealing them again. If they are not placed on a blank table, the DLL records the
image of the tabletop with the card displayed and uses that to replace the tabletop when the card is later
removed. If we deal a card face up, for instance, then deal it in the same place face down, then remove it,
the tabletop will appear to have a face up version of the card on it, even though no card is there.

 oneVal = GetCardValue(card(cardOne,1))
 twoVal = GetCardValue(card(cardTwo,1))
 'ace=1,deuce=2....jack=11,queen=12,king=13
 oneSuit = GetCardSuit(card(cardOne,1))
 twoSuit = GetCardSuit(card(cardTwo,1))
 'returns 1=Clubs, 2=Diamonds, 3=Hearts, 4=Spades.

 'Remove cards from table --
 'they will be redealt if they don't match.
 call RemoveCard hBox, card(cardOne,1)
 call RemoveCard hBox, card(cardTwo,1)

 page 2 / 11

Liberty BASIC Programmer's Encyc

 turns=turns+1

Ending the Turn
If the cards match, the 'score' variable is incremented by one. When a card is turned up it is first removed
from the table to restore the image of the tabletop, then dealt face up. After two cards are turned up, they
are removed if they match one another. If they do not match, they are removed to restore the tabletop
image, then redealt in the same location face down.

Variables were created to hold values for the first and second card clicked so that they can be evaluated for
a match and redealt at the correct x,y location if they do not match. If the 'cardOne' variable is 0, then the
card clicked is the first one to be drawn, otherwise it is the second one. These variables are reset to 0 after
two cards are drawn and evaluated.

 'See if cards match each other in suit and value.
 'If they don't match, turn them face down and redeal them.
 if (oneVal<>twoVal) or (oneSuit<>twoSuit) then
 'set status of cards to 0, which is face down
 Call SetCardStatus card(cardOne,1), 0
 Call SetCardStatus card(cardTwo,1), 0

 'deal card face down
 Call DealCard hBox,card(cardOne,1),cardOneX,cardOneY
 Call DealCard hBox,card(cardTwo,1),cardTwoX,cardTwoY
 else
 'If cards match, increment score and don't
 'replace them on the table.
 'Set visible to 'off'
 card(cardOne,2)=0
 card(cardTwo,2)=0
 score=score+1
 end if

 cardOne=0 : cardTwo=0
 cardOneX=0 : cardTwoX=0
 cardOneY=0 : cardTwoY=0 'reset for next try

 msg$="Turns: ";turns;" Score: ";score
 #1.g "place 10 420"
 #1.g "\" ; msg$; space$(400)
 RETURN

DEMO

 page 3 / 11

Liberty BASIC Programmer's Encyc

See Lesson 1 for QCard DLL and WAV files needed for the demo code.

'An open project card game, begun by Alyce Watson, May 27, 2003.
'Uses Qcard32.dll, a freeware library of playing card images.
'DLL by Stephen Murphy. Qcard32.DLL website:
'http://www.telusplanet.net/public/stevem/

'new this time
cardOne=0 'first card clicked by user
cardTwo=0 'second card clicked by user
cardOneX=0
cardTwoX=0
cardOneY=0
cardTwoY=0 'locations of cards clicked by user
turns=0 'record number of tries made by user
score=0 'record number of matches - 12 is max

[varSetup]
i=0 'i will be our counter var in for/next loops
design=1 'default design is circles
newIndex=0 'used when shuffling
tempCard=0 'temp var used when shuffling
clickCard=0 'index of current card clicked by user
dim card(24,2) 'array to hold card info
 'card(n,1)=index of card in deck
 'card(n,2)=visible on table? 1=yes, 0=no

gosub [fillCardArray] 'fill array with card values

nomainwin

 WindowWidth=640:WindowHeight=480
 UpperLeftX=1:UpperLeftY=1

 menu #1, "&File", "&New",[new],"E&xit", [quit]
 menu #1, "&Card Back Design","&Circles",[circles],"&Blue",[blue],_
 "&Red",[red],"&Mountain",[mountain],"&Purple",[purple],
"M&usic",[music]
 graphicbox #1.g, 0, 0, 640, 440
 open "Memory Card Game" for window_nf as #1
 #1 "trapclose [quit]"

 page 4 / 11

/QCard01

Liberty BASIC Programmer's Encyc

 'trap mouse clicks:
 #1.g "setfocus; when leftButtonUp [checkIndex]"

 'get graphicbox handle
 hBox=hwnd(#1.g)

 'open the dll
 open "qcard32.dll" for dll as #qc
 'initialize the deck
 Call InitializeDeck hBox

[new] 'reset variables and shuffle cards for next try
 turns=0 : score=0
 clickCard=0
 cardOne=0 : cardTwo=0
 cardOneX=0 : cardTwoX=0
 cardOneY=0 : cardTwoY=0

 Call SetDefaultValues
 Call SetCurrentBack design

 'draw a nice background
 #1.g "down; fill 10 190 225"
 #1.g "backcolor 10 190 225"

 gosub [shuffleCards]

 'set xy location to start deal
 x=10:y=2
 for i = 1 to 24
 'set status of all cards to 0, which is face down
 Call SetCardStatus card(i,1), 0

 'deal cards
 Call DealCard hBox,card(i,1),x,y

 x=x+100
 if x>510 then 'move to next row
 x=10
 y=y+100
 end if
 playwave "card.wav",sync

 'pause 100 milliseconds between cards
 call Pause 100
 scan

 page 5 / 11

Liberty BASIC Programmer's Encyc

 next
 wait

[checkIndex]
 clickCard=0:x=0:y=0 'reset values
 mx=MouseX : my=MouseY 'mouse x and y location
 'Cards are placed in a grid that is 100x100,
 'so it is easy to determine which card is clicked
 'by checking mouse position. Card height is about
 '100, and width is about 80.
 'Index of clicked card is placed in var called clickCard
 'and x,y locations are placed in vars called x and y.
 'MouseY determines row, and MouseX determines column.
 select case
 case my<=102 'first row
 y=2
 if mx<=90 then clickCard=1:x=10
 if (mx>=110) and (mx<=190) then clickCard=2:x=110
 if (mx>=210) and (mx<=290) then clickCard=3:x=210
 if (mx>=310) and (mx<=390) then clickCard=4:x=310
 if (mx>=410) and (mx<=490) then clickCard=5:x=410
 if (mx>=510) and (mx<=590) then clickCard=6:x=510
 case (my>=102) and (my<202) 'second row
 y=102
 if mx<=90 then clickCard=7:x=10
 if (mx>=110) and (mx<=190) then clickCard=8:x=110
 if (mx>=210) and (mx<=290) then clickCard=9:x=210
 if (mx>=310) and (mx<=390) then clickCard=10:x=310
 if (mx>=410) and (mx<=490) then clickCard=11:x=410
 if (mx>=510) and (mx<=590) then clickCard=12:x=510
 case (my>=202) and (my<302) 'third row
 y=202
 if mx<=90 then clickCard=13:x=10
 if (mx>=110) and (mx<=190) then clickCard=14:x=110
 if (mx>=210) and (mx<=290) then clickCard=15:x=210
 if (mx>=310) and (mx<=390) then clickCard=16:x=310
 if (mx>=410) and (mx<=490) then clickCard=17:x=410
 if (mx>=510) and (mx<=590) then clickCard=18:x=510
 case (my>=302) and (my<402) 'fourth row
 y=302
 if mx<=90 then clickCard=19:x=10
 if (mx>=110) and (mx<=190) then clickCard=20:x=110
 if (mx>=210) and (mx<=290) then clickCard=21:x=210
 if (mx>=310) and (mx<=390) then clickCard=22:x=310
 if (mx>=410) and (mx<=490) then clickCard=23:x=410

 page 6 / 11

Liberty BASIC Programmer's Encyc

 if (mx>=510) and (mx<=590) then clickCard=24:x=510
 case else
 clickCard=0
 end select

 if clickCard=0 then wait

 'if card is not visible (has been removed), then wait
 if card(clickCard,2)=0 then wait

 'remove card to restore tabletop
 call RemoveCard hBox, card(clickCard,1)

 'set status of cards to 1, which is face up
 Call SetCardStatus card(clickCard,1), 1

 'deal card face up
 Call DealCard hBox,card(clickCard,1),x,y

 gosub [readValue]
 wait

[readValue]
 'check whether this is first or second card
 if cardOne=0 then
 cardOne=clickCard
 cardOneX=x
 cardOneY=y
 return 'leave first card up and return
 else
 cardTwo=clickCard
 cardTwoX=x
 cardTwoY=y
 end if

 #1.g "when leftButtonUp" 'turn off mouse event while pausing
 call Pause 2000 '2 second pause to view cards
 #1.g "setfocus; when leftButtonUp [checkIndex]"

 oneVal = GetCardValue(card(cardOne,1))
 twoVal = GetCardValue(card(cardTwo,1))
 'ace=1,deuce=2....jack=11,queen=12,king=13
 oneSuit = GetCardSuit(card(cardOne,1))
 twoSuit = GetCardSuit(card(cardTwo,1))
 'returns 1=Clubs, 2=Diamonds, 3=Hearts, 4=Spades.

 page 7 / 11

Liberty BASIC Programmer's Encyc

 'Remove cards from table --
 'they will be redealt if they don't match.
 call RemoveCard hBox, card(cardOne,1)
 call RemoveCard hBox, card(cardTwo,1)
 turns=turns+1

 'See if cards match each other in suit and value.
 'If they don't match, turn them face down and redeal them.
 if (oneVal<>twoVal) or (oneSuit<>twoSuit) then
 'set status of cards to 0, which is face down
 Call SetCardStatus card(cardOne,1), 0
 Call SetCardStatus card(cardTwo,1), 0

 'deal card face down
 Call DealCard hBox,card(cardOne,1),cardOneX,cardOneY
 Call DealCard hBox,card(cardTwo,1),cardTwoX,cardTwoY
 else
 'If cards match, increment score and don't
 'replace them on the table.
 'Set visible to 'off'
 card(cardOne,2)=0
 card(cardTwo,2)=0
 score=score+1
 end if

 cardOne=0 : cardTwo=0
 cardOneX=0 : cardTwoX=0
 cardOneY=0 : cardTwoY=0 'reset for next try

 msg$="Turns: ";turns;" Score: ";score
 #1.g "place 10 420"
 #1.g "\" ; msg$; space$(400)
 RETURN

'setting new card back doesn't restart game,
'so new back won't show until new game is started:
[circles] design=1:goto [setDesign]
[blue] design=2:goto [setDesign]
[red] design=3:goto [setDesign]
[mountain] design=4:goto [setDesign]
[purple] design=5:goto [setDesign]
[music] design=6:goto [setDesign]

[setDesign]

 page 8 / 11

Liberty BASIC Programmer's Encyc

 Call SetCurrentBack design
 'design can be 1,2,3,4,5,6 for 6 possible designs
 wait

[fillCardArray]
 'fill card array
 'cards 1 to 52 are in the first deck
 'cards 53 to 104 are in the second deck
 'use cards Jack through King in each suit, first deck
 card(1,1)=11 'jack of clubs
 card(2,1)=12 'queen
 card(3,1)=13 'king
 card(4,1)=24 'jack of diamonds
 card(5,1)=25 'queen
 card(6,1)=26 'king
 card(7,1)=37 'jack of hearts
 card(8,1)=38 'queen
 card(9,1)=39 'king
 card(10,1)=50 'jack of spades
 card(11,1)=51 'queen
 card(12,1)=52 'king

 'now use second deck, to fill second half of array
 for i = 1 to 12
 card(i+12,1)=card(i,1)+52
 next
 RETURN

[shuffleCards]
 'first set all cards as visible, card(n,2)=1
 for i = 1 to 24
 card(i,2)=1
 next

 playwave "shuffle.wav",async

 'now shuffle cards
 for i = 1 to 24
 newIndex=int(rnd(0)*24)+1
 tempCard=card(i,1) 'temp var to allow switching values
 card(i,1)=card(newIndex,1)
'this index now contains value from random index
 card(newIndex,1)=tempCard
'random index now contains value from other index

 page 9 / 11

Liberty BASIC Programmer's Encyc

'now card(i,1) has switched values with a random card in the array
 next
 playwave "shuffle.wav",sync
 RETURN

[quit] close #qc:close #1:end

''''''''''''''''''''
'subs and functions:
Sub Pause ms
 'pause ms number of milliseconds
 calldll #kernel32,"Sleep",_
 ms as long, re as void
 End Sub

Function GetCardSuit(nC)
 'returns 1=Clubs, 2=Diamonds, 3=Hearts, 4=Spades.
 calldll #qc, "GetCardSuit",nC as long,_
 GetCardSuit as long
 End Function

Function GetCardValue(nC)
 'ace=1,deuce=2....jack=11,queen=12,king=13
 calldll #qc, "GetCardValue",nC as long,_
 GetCardValue as long
 End Function

Sub InitializeDeck hndle
 calldll #qc, "InitializeDeck",_
 hndle as ulong,r as long
 End Sub

Sub SetCardStatus nC,face
 'nC is number of card - 1-52 in first deck and
 '53-104 in second deck, if used
 'face: 0=facedown,1=faceup
 calldll #qc, "SetCardStatus",nC as long,_
 face as long,r as void
 End Sub

Sub DealCard hndle,nC,x,y
 'places card on window whose handle is hndle at x,y
 'nC is number of card - 1-52 in first deck and
 '53-104 in second deck, if used

 page 10 / 11

Liberty BASIC Programmer's Encyc

 calldll #qc, "DealCard",hndle as ulong,nC as long,_
 x as long,y as long,r as void
 End Sub

Sub SetCurrentBack nV
 'nV can be 1,2,3,4,5,6 for 6 possible designs
 calldll #qc, "SetCurrentBack",nV as long,r as void
 End Sub

Sub SetDefaultValues
 'reset all card properties back to their default values.
 calldll #qc, "SetDefaultValues",r as void
 End Sub

Sub RemoveCard hndle,nC
 'removes a card from screen that was
 'drawn with DealCard, replacing screen background
 calldll #qc, "RemoveCard",hndle as ulong,_
 nC as long,r as void
 End Sub

QCard DLL Lesson 7 | Checking for a Match | Two Cards per Turn | Removing Cards at the end of Turn |
Ending the Turn | DEMO

Lesson 6 Lesson 8

Powered by TCPDF (www.tcpdf.org)

 page 11 / 11

/QCard06
/QCard08
http://www.tcpdf.org

	QCard07

