
Liberty BASIC Programmer's Encyc

QCard DLL Lesson 8
Lesson 7 Lesson 9

-
 Alyce

QCard DLL Lesson 8 | Finishing the Memory Card Game | Duplicate Click Error | End of Game | Play
Again? | DEMO
See Lesson 1 for QCard DLL and WAV files needed for the demo code.

Finishing the Memory Card Game
It is time to fix some errors, and the game is done!

Duplicate Click Error
In the code for lesson 7, if the user turns over a card and clicks it again while it is turned up the program
registers a match! We can fix that simply by checking to see if cardTwo is in the same spot as cardOne,
and if it is, stop and wait for more user events.

 'Check to see if the user has already exposed this card.
 if clickCard=cardOne then wait

That was easy!

End of Game
There is an additional error in the code from lesson 7. Nothing happens when all cards are removed from
the table. The user needs to get a message and have the ability to begin a new game. We've added a flag to
indicate that the game is over. The gameWon variable is 0 when a game is in progress.

gameWon=0 'flag that is set when all pairs are removed

When the game is over we set the flag to 1.

 page 1 / 10

/QCard07
/QCard09
https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce
/QCard01

Liberty BASIC Programmer's Encyc

 if score=12 then gameWon=1 'flag that all pairs are removed

Play Again?
When the game is over, we ask the user if he wants to play again. If he does, we go to the [new] routine. If
he doesn't, we disable mouse events and wait. 'We've moved the mouse-button trapping code so that it
appears after the [new] label rather than before it 'so a new game automatically restores the trapping of the
leftButtonUp event.

 'If all pairs have been removed, ask user if he
 'wants to play again.
 if gameWon=1 then
 msg$="You have won in ";turns;" turns. Play again?"
 confirm msg$;answer$
 if answer$="yes" then
 'start a new game
 goto [new]
 else
 'disable mouse event trapping and wait
 #1.g "when leftButtonUp"
 end if
 end if
 wait

DEMO
See Lesson 1 for QCard DLL and WAV files needed for the demo code.

'new this time
gameWon=0 'flag that is set when all pairs are removed

[varSetup]
i=0 'i will be our counter var in for/next loops
design=1 'default design is circles
newIndex=0 'used when shuffling
tempCard=0 'temp var used when shuffling
clickCard=0 'index of current card clicked by user
dim card(24,2) 'array to hold card info
 'card(n,1)=index of card in deck
 'card(n,2)=visible on table? 1=yes, 0=no

 page 2 / 10

/QCard01

Liberty BASIC Programmer's Encyc

gosub [fillCardArray] 'fill array with card values

nomainwin
 WindowWidth=640:WindowHeight=480
 UpperLeftX=1:UpperLeftY=1

 menu #1, "&File", "&New",[new],"E&xit", [quit]
 menu #1, "&Card Back Design","&Circles",[circles],"&Blue",[blue],_
 "&Red",[red],"&Mountain",[mountain],"&Purple",[purple],
"M&usic",[music]
 graphicbox #1.g, 0, 0, 640, 440
 open "Memory Card Game" for window_nf as #1
 #1 "trapclose [quit]"

 'get graphicbox handle
 hBox=hwnd(#1.g)

 'open the dll
 open "qcard32.dll" for dll as #qc
 'initialize the deck
 Call InitializeDeck hBox

[new] 'reset variables and shuffle cards for next try
 turns=0 : score=0
 clickCard=0 : gameWon=0
 cardOne=0 : cardTwo=0
 cardOneX=0 : cardTwoX=0
 cardOneY=0 : cardTwoY=0

 Call SetDefaultValues
 Call SetCurrentBack design

 'draw a nice background
 #1.g "down; fill 10 190 225"
 #1.g "backcolor 10 190 225"
 'trap mouse clicks:
 #1.g "setfocus; when leftButtonUp [checkIndex]"

 gosub [shuffleCards]

 'set xy location to start deal
 x=10:y=2
 for i = 1 to 24
 'set status of all cards to 0, which is face down
 Call SetCardStatus card(i,1), 0

 page 3 / 10

Liberty BASIC Programmer's Encyc

 'deal cards
 Call DealCard hBox,card(i,1),x,y

 x=x+100
 if x>510 then 'move to next row
 x=10
 y=y+100
 end if
 playwave "card.wav",sync

 'pause 100 milliseconds between cards
 call Pause 100
 scan
 next
 wait

[checkIndex]
 clickCard=0:x=0:y=0 'reset values
 mx=MouseX : my=MouseY 'mouse x and y location
 'Cards are placed in a grid that is 100x100,
 'so it is easy to determine which card is clicked
 'by checking mouse position. Card height is about
 '100, and width is about 80.
 'Index of clicked card is placed in var called clickCard
 'and x,y locations are placed in vars called x and y.
 'MouseY determines row, and MouseX determines column.
 select case
 case my<=102 'first row
 y=2
 if mx<=90 then clickCard=1:x=10
 if (mx>=110) and (mx<=190) then clickCard=2:x=110
 if (mx>=210) and (mx<=290) then clickCard=3:x=210
 if (mx>=310) and (mx<=390) then clickCard=4:x=310
 if (mx>=410) and (mx<=490) then clickCard=5:x=410
 if (mx>=510) and (mx<=590) then clickCard=6:x=510
 case (my>=102) and (my<202) 'second row
 y=102
 if mx<=90 then clickCard=7:x=10
 if (mx>=110) and (mx<=190) then clickCard=8:x=110
 if (mx>=210) and (mx<=290) then clickCard=9:x=210
 if (mx>=310) and (mx<=390) then clickCard=10:x=310
 if (mx>=410) and (mx<=490) then clickCard=11:x=410
 if (mx>=510) and (mx<=590) then clickCard=12:x=510
 case (my>=202) and (my<302) 'third row
 y=202

 page 4 / 10

Liberty BASIC Programmer's Encyc

 if mx<=90 then clickCard=13:x=10
 if (mx>=110) and (mx<=190) then clickCard=14:x=110
 if (mx>=210) and (mx<=290) then clickCard=15:x=210
 if (mx>=310) and (mx<=390) then clickCard=16:x=310
 if (mx>=410) and (mx<=490) then clickCard=17:x=410
 if (mx>=510) and (mx<=590) then clickCard=18:x=510
 case (my>=302) and (my<402) 'fourth row
 y=302
 if mx<=90 then clickCard=19:x=10
 if (mx>=110) and (mx<=190) then clickCard=20:x=110
 if (mx>=210) and (mx<=290) then clickCard=21:x=210
 if (mx>=310) and (mx<=390) then clickCard=22:x=310
 if (mx>=410) and (mx<=490) then clickCard=23:x=410
 if (mx>=510) and (mx<=590) then clickCard=24:x=510
 case else
 clickCard=0
 end select

 if clickCard=0 then wait

 'Check to see if the user has already exposed this card.
 if clickCard=cardOne then wait

 'if card is not visible (has been removed), then wait
 if card(clickCard,2)=0 then wait

 'remove card to restore tabletop
 call RemoveCard hBox, card(clickCard,1)

 'set status of cards to 1, which is face up
 Call SetCardStatus card(clickCard,1), 1

 'deal card face up
 Call DealCard hBox,card(clickCard,1),x,y

 gosub [readValue]

 'If all pairs have been removed, ask user if he
 'wants to play again.
 if gameWon=1 then
 msg$="You have won in ";turns;" turns. Play again?"
 confirm msg$;answer$
 if answer$="yes" then
 'start a new game
 goto [new]
 else

 page 5 / 10

Liberty BASIC Programmer's Encyc

 'disable mouse event trapping and wait
 #1.g "when leftButtonUp"
 end if
 end if
 wait

[readValue]
 'check whether this is first or second card
 if cardOne=0 then
 cardOne=clickCard
 cardOneX=x
 cardOneY=y
 return 'leave first card up and return
 else
 cardTwo=clickCard
 cardTwoX=x
 cardTwoY=y
 end if

 #1.g "when leftButtonUp" 'turn off mouse event while pausing
 call Pause 2000 '2 second pause to view cards
 #1.g "setfocus; when leftButtonUp [checkIndex]"

 oneVal = GetCardValue(card(cardOne,1))
 twoVal = GetCardValue(card(cardTwo,1))
 'ace=1,deuce=2....jack=11,queen=12,king=13
 oneSuit = GetCardSuit(card(cardOne,1))
 twoSuit = GetCardSuit(card(cardTwo,1))
 'returns 1=Clubs, 2=Diamonds, 3=Hearts, 4=Spades.

 'Remove cards from table --
 'they will be redealt if they don't match.
 call RemoveCard hBox, card(cardOne,1)
 call RemoveCard hBox, card(cardTwo,1)
 turns=turns+1

 'See if cards match each other in suit and value.
 'If they don't match, turn them face down and redeal them.
 if (oneVal<>twoVal) or (oneSuit<>twoSuit) then
 'set status of cards to 0, which is face down
 Call SetCardStatus card(cardOne,1), 0
 Call SetCardStatus card(cardTwo,1), 0

 'deal card face down
 Call DealCard hBox,card(cardOne,1),cardOneX,cardOneY

 page 6 / 10

Liberty BASIC Programmer's Encyc

 Call DealCard hBox,card(cardTwo,1),cardTwoX,cardTwoY
 else
 'If cards match, increment score and don't
 'replace them on the table.
 'Set visible to 'off'
 card(cardOne,2)=0
 card(cardTwo,2)=0
 score=score+1
 end if

 cardOne=0 : cardTwo=0
 cardOneX=0 : cardTwoX=0
 cardOneY=0 : cardTwoY=0 'reset for next try

 msg$="Turns: ";turns;" Score: ";score
 #1.g "place 10 420"
 #1.g "\" ; msg$; space$(400)
 if score=12 then gameWon=1 'flag that all pairs are removed
 RETURN

'setting new card back doesn't restart game,
'so new back won't show until new game is started:
[circles] design=1:goto [setDesign]
[blue] design=2:goto [setDesign]
[red] design=3:goto [setDesign]
[mountain] design=4:goto [setDesign]
[purple] design=5:goto [setDesign]
[music] design=6:goto [setDesign]

[setDesign]
 Call SetCurrentBack design
 'design can be 1,2,3,4,5,6 for 6 possible designs
 wait

[fillCardArray]
 'fill card array
 'cards 1 to 52 are in the first deck
 'cards 53 to 104 are in the second deck
 'use cards Jack through King in each suit, first deck
 card(1,1)=11 'jack of clubs
 card(2,1)=12 'queen
 card(3,1)=13 'king
 card(4,1)=24 'jack of diamonds
 card(5,1)=25 'queen

 page 7 / 10

Liberty BASIC Programmer's Encyc

 card(6,1)=26 'king
 card(7,1)=37 'jack of hearts
 card(8,1)=38 'queen
 card(9,1)=39 'king
 card(10,1)=50 'jack of spades
 card(11,1)=51 'queen
 card(12,1)=52 'king

 'now use second deck, to fill second half of array
 for i = 1 to 12
 card(i+12,1)=card(i,1)+52
 next
 RETURN

[shuffleCards]
 'first set all cards as visible, card(n,2)=1
 for i = 1 to 24
 card(i,2)=1
 next

 playwave "shuffle.wav",async

 'now shuffle cards
 for i = 1 to 24
 newIndex=int(rnd(0)*24)+1
 tempCard=card(i,1) 'temp var to allow switching values
 card(i,1)=card(newIndex,1)
'this index now contains value from random index
 card(newIndex,1)=tempCard
'random index now contains value from other index

'now card(i,1) has switched values with a random card in the array
 next
 playwave "shuffle.wav",sync
 RETURN

[quit] close #qc:close #1:end

''''''''''''''''''''
'subs and functions:
Sub Pause ms
 'pause ms number of milliseconds
 calldll #kernel32,"Sleep",_
 ms as long, re as void

 page 8 / 10

Liberty BASIC Programmer's Encyc

 End Sub

Function GetCardSuit(nC)
 'returns 1=Clubs, 2=Diamonds, 3=Hearts, 4=Spades.
 calldll #qc, "GetCardSuit",nC as long,_
 GetCardSuit as long
 End Function

Function GetCardValue(nC)
 'ace=1,deuce=2....jack=11,queen=12,king=13
 calldll #qc, "GetCardValue",nC as long,_
 GetCardValue as long
 End Function

Sub InitializeDeck hndle
 calldll #qc, "InitializeDeck",_
 hndle as ulong,r as long
 End Sub

Sub SetCardStatus nC,face
 'nC is number of card - 1-52 in first deck and
 '53-104 in second deck, if used
 'face: 0=facedown,1=faceup
 calldll #qc, "SetCardStatus",nC as long,_
 face as long,r as void
 End Sub

Sub DealCard hndle,nC,x,y
 'places card on window whose handle is hndle at x,y
 'nC is number of card - 1-52 in first deck and
 '53-104 in second deck, if used
 calldll #qc, "DealCard",hndle as ulong,nC as long,_
 x as long,y as long,r as void
 End Sub

Sub SetCurrentBack nV
 'nV can be 1,2,3,4,5,6 for 6 possible designs
 calldll #qc, "SetCurrentBack",nV as long,r as void
 End Sub

Sub SetDefaultValues
 'reset all card properties back to their default values.
 calldll #qc, "SetDefaultValues",r as void
 End Sub

Sub RemoveCard hndle,nC

 page 9 / 10

Liberty BASIC Programmer's Encyc

 'removes a card from screen that was
 'drawn with DealCard, replacing screen background
 calldll #qc, "RemoveCard",hndle as ulong,_
 nC as long,r as void
 End Sub

QCard DLL Lesson 8 | Finishing the Memory Card Game | Duplicate Click Error | End of Game | Play
Again? | DEMO

Lesson 7 Lesson 9

Powered by TCPDF (www.tcpdf.org)

 page 10 / 10

/QCard06
/QCard09
http://www.tcpdf.org

	QCard08

