Liberty BASIC Programmer's Encyc

QCard DLL Lesson 9

Lesson 8 Lesson 10

Alyce
QCard DLL Lesson 9 | Dragging a Card | Mouse Click Starts Drag | InitDrag | AbortDrag | DoDrag |

EndDrag | DEMO

See Lesson 1 for QCard DLL and WAV files needed for the demo code.

Dragging a Card

QCard has features that allows us to drag a single card or a block of cards. We'll start with dragging a
single card.

Mouse Click Starts Drag

We can start the dragging event when the user presses a mouse button down. We'll use the right button for
this. Once the button is down, we'll activate the mouse move event for the right button and call on QCard
to intialize the dragging procedure. Since InitDrag returns the index of the clicked card, we'll write that on
the display so we can see what's happening. We need to send the graphicbox handle and MouseX and
MouseY to the function.

#1.9 "when right ButtonDown [initDrag]"
wai t

[initDrag]
car dl ndex=I ni t Dr ag(hBox, MouseX, MouseY)
#1.9 "place 10 420;\Drag Card Index is ";cardlndex; space$(100)
#1.g "when rightButtonMove [doDrag]"
wai t

InitDrag

Here is the documentation from QCard for InitDrag.

page 1/8

/QCard08
/QCard10
https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce
/QCard01

Liberty BASIC Programmer's Encyc

® Use this function in a MouseDown event to start a drag operation. The function searches through all
cards to determine if the mouse cursor is over any card whose IsBlocked property is FALSE. If it
finds one, it returns the number of that card. If it does not find one, it searches through all the cards
in the deck to see if the mouse lies in the top 16 (or User-Defined OffSet) pixels of any card, blocked
or not. If it does, it returns the number of that card.

® By checking the IsBlocked property of this returned card, you can tell if the user wants to carry out a
single drag or a block drag. If InitDrag returns a value of 0, the mouse is not currently located over
any card. The InitDrag function should always be followed by a corresponding AbortDrag, an
EndDrag or an EndBlockDrag call. This is due to that fact that InitDrag "captures" all mouse input,
and requires one of these corresponding calls to release the capture. The values nx and ny are the
current mouse coordinates.

Here is the InitDrag function, wrapped in a Liberty BASIC function.

Function InitDrag(hndle, x, y)
calldll #qgc, "InitDrag", _
hndl e as ulong, x as long, y as long, _
InitDrag as | ong
end function

AbortDrag

QCard DLL captures mouse events while dragging. If mouse event capture is not released, the program
will crash. Mouse event capture is released by EndDrag, but if something goes amiss, we can assure a
stable program by calling AbortDrag to release mouse event capture.

calldll #gc, "AbortDrag",re as void

DoDrag

DoDrag is the subroutine used by QCard to move the card. It requires the handle of the graphicbox and
MouseX and MouseY.

[doDr ag]
cal|l DoDrag hBox, MouseX, MuseY
#1.g "when rightButtonUp [endDrag]"
wai t

page 2/ 8

Liberty BASIC Programmer's Encyc

The documentation tells us that DoDrag, "Carries out the drag operation which was initiated by InitDrag
call. DoDrag moves the current Source Card to its new location. Values nx and ny are the current mouse
coordinates." It does not return a value.

Sub DoDrag hndl e, x,y
calldl'l #gc, "DoDrag", hndl e as ul ong, _
x as long, y as long, r as void
end sub

EndDrag

We stop the dragging operation and drop the card at the current location when the right mouse button is
released. The EndDrag function requires the handle of the graphicbox and MouseX and MouseY. We also
cancel the "rightButtonUp" event in our code.

[endDr ag]
#1.g "when right ButtonUp"
car dl ndex=EndDr ag(hBox, MouseX, MbuseY)
#1.9
"place 10 420;\Destination Card Index is ";cardlndex; space$(100)
wai t

Qcard tells us this about EndDrag, "EndDrag ends a single drag operation and returns the number of the
Destination card (that is, the card it is being dropped on), if any. It searches the deck for any card which
overlaps the Source Card and whose IsBlocked property is FALSE. If it finds one, it returns the number of
that card. The function also releases the mouse which was captured by the InitDrag call."

Function EndDrag(hndl e, x, y)
calldll #qgc, "EndDrag", hndl e as ul ong, _
x as long, y as long, EndDrag as | ong
end function

DEMO
See Lesson 1 for QCard DLL and WAV files needed for the demo code.

The demo uses the foundation of our Memory card game. It invites the user to right click and drag a card.

page 3/8

/QCard01

Liberty BASIC Programmer's Encyc

"An open project card ganme, begun by Alyce Watson, May 27, 2003.

"Uses (xard32.dll, a freeware library of playing card inages.
"DLL by Stephen Murphy. Qcard32.DLL website:
"http://ww.telusplanet. net/public/stevent

di m card(24) "array to hold cards

gosub [fill CardArray] "fill array with card val ues
newl ndex=0 "used when shuffling

t enpCar d=0 "tenp var used when shuffling

[var Set up]

i =0 i will be our counter var in for/next |oops
desi gn=1 "default design is circles

nomai Nw n

W ndoww dt h=640: W ndowHei ght =480
Upper Lef t X=1: Upper Left Y=1

menu #1, "&File", "&New',[new],"E&it", [quit]
gr aphi cbox #1.g, 0, 0, 640, 440

open "Card Draggi ng" for w ndow _nf as #1

#1 "trapclose [quit]"

' get graphi cbox handl e
hBox=hwnd(#1. Q)

"open the dll

open "qcard32.dll" for dll as #gc
"initialize the deck

Call InitializeDeck hBox

[new
Cal | Set Def aul t Val ues
Cal | Set CurrentBack design

"draw a ni ce background
#1.g "down; fill 10 190 225"
#1.g "backcol or 10 190 225"
"tenp nmessage for this deno only
#1.g "place 10 420"
#1.g9 "\ R ght -
click on a card, then nove nouse to drag and drop it."
gosub [shuffl eCards]

"set xy location to start dea
x=10: y=2

page 4 /8

Liberty BASIC Programmer's Encyc

for i =1to 24
"set status of all cards to O, which is face down
" - we won't do this yet, so we can see the results
"of our deal
"call SetCardStatus card(i), O

Cal|l Deal Card hBox,card(i), X,y
x=x+100
if x>510 then "nmove to next row
x=10
y=y+100
end if
pl aywave "card.wav", sync

pause 100 m Il iseconds between cards
cal |l Pause 100

scan
next
#1.9 "when rightButtonDown [initDrag]"
wai t
[initDrag]

car dl ndex=Il ni t Dr ag(hBox, MouseX, MouseY)

#1.9 "place 10 420;\Drag Card Index is ";cardlndex; space$(100)
#1.g "when right ButtonMve [doDrag]™

wai t

[doDr ag]
call DoDrag hBox, MuseX, MuseY
#1.g "when rightButtonUp [endDrag]”
wai t

[endDr ag]
#1.g "when rightButtonUp"
car dl ndex=EndDr ag(hBox, MouseX, MouseY)
#1.9
"place 10 420;\Destination Card Index is ";cardl ndex; space$(100)
wai t

[fill CardArray]
"fill card array
‘cards 1 to 52 are in the first deck
‘cards 53 to 104 are in the second deck
‘use cards Jack through King in each suit, first deck
card(1)=11 'jack of clubs
card(2)=12 ' queen

page 5/8

Liberty BASIC Programmer's Encyc

card(3)=13 'king

card(4)=24 ‘'jack of dianonds
card(5) =25 'queen

card(6)=26 'king

card(7)=37 'jack of hearts
card(8)=38 ' queen

card(9)=39 'king

card(10)=50 'jack of spades
card(11)=51 'queen
card(12)=52 'Kking

'now use second deck, to fill second half of array
for i =1to 12
card(i +12)=card(i) +52
next
RETURN

[shuf fl eCar ds]
pl aywave "shuffl e.wav", async
"now shuffle cards
for i =1to 24
newl ndex=i nt (rnd(0) *24) +1
tenpCard=card(i) 'tenp var to allow sw tching val ues
card(i)=card(new ndex)
"this index now contains value fromrandom i ndex
card(newl ndex) =tenpCard
"random i ndex now contains val ue from ot her index

"now card(i) has switched values with a randomcard in the array
next
pl aywave "shuffle.wav", sync
RETURN

[quit] close #gc:close #1:end

'subs and functions:
Sub Pause ns
' pause ns nunber of mlliseconds
cal I dl'l #kernel 32," Sl eep”, _
ns as long, re as void
End Sub

Function InitDrag(hndle, x, y)

page 6/ 8

Liberty BASIC Programmer's Encyc

Sub

calldll #qgc, "InitDrag", _
hndl e as ulong, x as long, y as long, _
InitDrag as | ong

end function

DoDrag hndl e, x,y

calldll #qgc, "DoDrag", hndl e as ul ong, _
x as long, y as long, r as void

end sub

Functi on EndDrag(hndl e, x,y)

Sub

Sub

Sub

Sub

Sub

calldl'l #gc, "EndDrag", hndle as ul ong, _
x as long, y as long, EndDrag as | ong
end function

InitializeDeck hndle

calldl'l #gc, "InitializeDeck", _
hndl e as ulong,r as |ong

End Sub

Set CardSt atus nC, face

'"nCis nunber of card - 1-52 in first deck and
'53-104 in second deck, if used

‘face: 0=facedown, 1=faceup

calldll #qgc, "SetCardStatus",nC as |ong, _

face as long,r as void

End Sub

Deal Card hndl e, nC x,y

'places card on wi ndow whose handle is hndle at x,y

"'nCis nunber of card - 1-52 in first deck and
"53-104 in second deck, if used

calldll #qgc, "Deal Card", hndl e as ul ong, nC as | ong, _

x as long,y as long,r as void
End Sub

DrawBack hndle, nV, x, y

'nV can be 1,2,3,4,5,6 for 6 possible designs
"draws a cardback i nage on screen

calldl'l #gc, "DrawBack", hndl e as ul ong, _

nV as long,x as long,y as long,r as void

End Sub

Set Current Back nV
'"nV can be 1,2,3,4,5,6 for 6 possible designs

calldl'l #gc, "SetCurrentBack",nV as long,r as void

page 7/ 8

Liberty BASIC Programmer's Encyc

End Sub

Sub Set Def aul t Val ues
"reset all card properties back to their default val ues.
calldll #qgc, "SetDefaultValues",r as void
End Sub

QCard DLL Lesson 9 | Dragging a Card | Mouse Click Starts Drag | InitDrag | AbortDrag | DoDrag |
EndDrag | DEMO

Lesson 8 Lesson 10

page 8/8

/QCard08
/QCard10
http://www.tcpdf.org

	QCard09

