
Liberty BASIC Programmer's Encyc

QCard DLL Lesson 10
Lesson 9 Lesson 11

-
 Alyce

QCard DLL Lesson 10 | More on Card Dragging | Blocked Cards | Blocking Some Cards | Aborting the
Dragging Operation | Preventing the Drag of Blocked Cards | Offset Value | DEMO
See Lesson 1 for QCard DLL and WAV files needed for the demo code.

More on Card Dragging
In the previous demo we allowed the user to right-click on a card and drag it around. When the user
released the button the card was dropped in a new position. We paid no attention to the card's status or to
the location it was dropped. In a real game we'd need to monitor all such activity.

Blocked Cards
QCard has two functions to set and query the blocked status of a card. A card can be marked as blocked if
it is covered or partially covered by another card. QCard lets us set the "blocked" status with
AdjustCardBlocked. We can query the "blocked" status of a card with GetCardBlocked. The API calls
look like this:

 calldll #qc, "AdjustCardBlocked",_
 nC as long,_ 'index of card to block/unblock
 bValue as long,_ '1=blocked, 0=unblocked
 re as void 'no return

 calldll #qc, "GetCardBlocked",_
 nC as long,_ 'index of card to query
 isBlocked as long '1=blocked, 0=unblocked

Blocking Some Cards
In our demo, we'll change the display so that the rows of cards overlap. Each row is 20 pixels below the
previous row. When we deal the first three rows we'll also set the "blocked" status of each card in that row
to "blocked". We will leave the cards in the fourth row with the default "unblocked" status. We've
introduced a variable called "row" to keep track of the row being dealt.

 page 1 / 8

/QCard09
/QCard11
https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce
/QCard01

Liberty BASIC Programmer's Encyc

 x=10:y=2:row=1
 for i = 1 to 24
 Call DealCard hBox,card(i),x,y
 'When creating a row or pile of cards,
 'only the topmost card should have an
 'IsBlocked value of FALSE.
 if row<4 then call AdjustCardBlocked card(i),1

 x=x+100
 if x>510 then 'move to next row
 x=10
 y=y+offset
 row=row+1
 end if
 playwave "card.wav",sync

 'pause 100 milliseconds between cards
 call Pause 100
 scan
 next

Aborting the Dragging Operation
QCard DLL captures mouse events from the time InitDrag is called until EndDrag is called. If for any
reason we need to abort the dragging procedure, we must call AbortDrag so that the DLL releases the
capture of mouse events.

 calldll #qc, "AbortDrag", re as void

Preventing the Drag of Blocked Cards
When the user right-clicks the mouse we'll use InitDrag to discover which card in our card array was
clicked. InitDrag returns the index of the card at the given x,y location. We then query its blocked status.

If the card is blocked we document that at the bottom of the display and halt the routine with AbortDrag.
If it is not blocked, we begin the dragging procedure, as we did in the last lesson.

[initDrag]
 cardIndex=InitDrag(hBox,MouseX,MouseY)

 page 2 / 8

Liberty BASIC Programmer's Encyc

 isBlocked=GetCardBlocked(cardIndex) 'see if card is blocked
 if isBlocked<>0 then
 'if card is blocked, inform user and abort drag operation
 call AbortDrag
 #1.g
"place 10 420;\BLOCKED Card Index is ";cardIndex;space$(100)
 wait
 end if
 #1.g "place 10 420;\Drag Card Index is ";cardIndex;space$(100)
 #1.g "when rightButtonMove [doDrag]"
 wait

In a real game you'd want to set the blocked status of the newly uncovered card to 0. You'd also need to set
the card that was just covered by the dragged card to "blocked". We did not complicate the code with
these routines in order to keep the demo program short and understandable.

Offset Value
QCard has a default offset value of 16 pixels. The cards are 70x95 pixels and if one card is displayed 16
pixels lower thena the card beneath both card values will be visible. This offset is important to the DLL
when it discovers which card is at MouseX and MouseY.

We can change the offset with SetOffSet. We change the offset to 20 pixels for this demo.

 calldll #qc, "SetOffSet",_
'change pixel offset for vertical colums of cards
 offset as long,_ 'number of pixels to offset
 re as void

DEMO
See Lesson 1 for QCard DLL and WAV files needed for the demo code.

The demo deals the cards in four overlapped rows. It sets the blocked status of cards in the first three rows.
It checks the blocked status of the card clicked by the user. It allows the user to drag the card if the
designated card status is "unblocked". We've eliminated the shuffling routine to keep things simple for this
demo.

'An open project card game, begun by Alyce Watson, May 27, 2003.

 page 3 / 8

/QCard01

Liberty BASIC Programmer's Encyc

'Uses Qcard32.dll, a freeware library of playing card images.
'DLL by Stephen Murphy. Qcard32.DLL website:
'http://www.telusplanet.net/public/stevem/

dim card(24) 'array to hold cards
gosub [fillCardArray] 'fill array with card values

[varSetup]
i=0 'i will be our counter var in for/next loops
offset=20 'offset for card vertical spacing for dragging purposes

nomainwin
 WindowWidth=640:WindowHeight=480
 UpperLeftX=1:UpperLeftY=1

 menu #1, "&File", "&New",[new],"E&xit", [quit]
 graphicbox #1.g, 0, 0, 640, 440
 open "Dragging Cards" for window_nf as #1
 #1 "trapclose [quit]"

 'get graphicbox handle
 hBox=hwnd(#1.g)

 'open the dll
 open "qcard32.dll" for dll as #qc
 'initialize the deck
 Call InitializeDeck hBox

[new]
 Call SetDefaultValues

 'draw a nice background
 #1.g "down; fill 10 190 225"
 #1.g "backcolor 10 190 225"
 'temp message for this demo only
 #1.g "place 10 420"
 #1.g "\Right-
click on a card, then move mouse to drag and drop it."

 offset=20
 call SetOffSet offset 'set offset to 20 pixels - default is 16

 'set xy location to start deal
 x=10:y=2:row=1
 for i = 1 to 24
 Call DealCard hBox,card(i),x,y

 page 4 / 8

Liberty BASIC Programmer's Encyc

 'When creating a row or pile of cards,
 'only the topmost card should have an
 'IsBlocked value of FALSE.
 if row<4 then call AdjustCardBlocked card(i),1

 x=x+100
 if x>510 then 'move to next row
 x=10
 y=y+offset
 row=row+1
 end if
 playwave "card.wav",sync

 'pause 100 milliseconds between cards
 call Pause 100
 scan
 next
 #1.g "when rightButtonDown [initDrag]"
wait

[initDrag]
 cardIndex=InitDrag(hBox,MouseX,MouseY)
 isBlocked=GetCardBlocked(cardIndex) 'see if card is blocked
 if isBlocked<>0 then
 'if card is blocked, inform user and abort drag operation
 call AbortDrag
 #1.g
"place 10 420;\BLOCKED Card Index is ";cardIndex;space$(100)
 wait
 end if
 #1.g "place 10 420;\Drag Card Index is ";cardIndex;space$(100)
 #1.g "when rightButtonMove [doDrag]"
 wait

[doDrag]
 call DoDrag hBox, MouseX, MouseY
 #1.g "when rightButtonUp [endDrag]"
 wait

[endDrag]
 #1.g "when rightButtonUp"
 cardIndex=EndDrag(hBox,MouseX,MouseY)
 #1.g
"place 10 420;\Destination Card Index is ";cardIndex;space$(100)
 wait

 page 5 / 8

Liberty BASIC Programmer's Encyc

[fillCardArray]
 'fill card array
 'cards 1 to 52 are in the first deck
 'cards 53 to 104 are in the second deck
 'use cards Jack through King in each suit, first deck
 card(1)=11 'jack of clubs
 card(2)=12 'queen
 card(3)=13 'king
 card(4)=24 'jack of diamonds
 card(5)=25 'queen
 card(6)=26 'king
 card(7)=37 'jack of hearts
 card(8)=38 'queen
 card(9)=39 'king
 card(10)=50 'jack of spades
 card(11)=51 'queen
 card(12)=52 'king

 'now use second deck, to fill second half of array
 for i = 1 to 12
 card(i+12)=card(i)+52
 next
 RETURN

[quit] close #qc:close #1:end

''''''''''''''''''''
'subs and functions:
Sub Pause ms
 'pause ms number of milliseconds
 calldll #kernel32,"Sleep",_
 ms as long, re as void
 End Sub

Sub SetOffSet offset
 calldll #qc, "SetOffSet",offset as long,_
 re as void
 end sub

Sub AdjustCardBlocked nC, bValue
 calldll #qc, "AdjustCardBlocked",_
 nC as long, bValue as long, re as void
 end sub

 page 6 / 8

Liberty BASIC Programmer's Encyc

Function GetCardBlocked(nC)
 calldll #qc, "GetCardBlocked",nC as long,_
 GetCardBlocked as long
 end function

Function InitDrag(hndle, x, y)
 calldll #qc, "InitDrag",_
 hndle as ulong, x as long, y as long,_
 InitDrag as long
 end function

Sub AbortDrag
 calldll #qc, "AbortDrag",re as void
 end sub

Sub DoDrag hndle,x,y
 calldll #qc, "DoDrag",hndle as ulong,_
 x as long, y as long, r as void
 end sub

Function EndDrag(hndle,x,y)
 calldll #qc, "EndDrag",hndle as ulong,_
 x as long, y as long, EndDrag as long
 end function

Sub InitializeDeck hndle
 calldll #qc, "InitializeDeck",_
 hndle as ulong,r as long
 End Sub

Sub DealCard hndle,nC,x,y
 'places card on window whose handle is hndle at x,y
 'nC is number of card - 1-52 in first deck and
 '53-104 in second deck, if used
 calldll #qc, "DealCard",hndle as ulong,nC as long,_
 x as long,y as long,r as void
 End Sub

Sub SetDefaultValues
 'reset all card properties back to their default values.
 calldll #qc, "SetDefaultValues",r as void
 End Sub

QCard DLL Lesson 10 | More on Card Dragging | Blocked Cards | Blocking Some Cards | Aborting the
Dragging Operation | Preventing the Drag of Blocked Cards | Offset Value | DEMO

 page 7 / 8

Liberty BASIC Programmer's Encyc

Lesson 9 Lesson 11

Powered by TCPDF (www.tcpdf.org)

 page 8 / 8

/QCard09
/QCard11
http://www.tcpdf.org

	QCard10

