Liberty BASIC Programmer's Encyc

QCard DLL Lesson 10

Lesson 9 Lesson 11

Alyce
QCard DLL Lesson 10 | More on Card Dragging | Blocked Cards | Blocking Some Cards | Aborting the

Dragging Operation | Preventing the Drag of Blocked Cards | Offset Value | DEMO

See Lesson 1 for QCard DLL and WAV files needed for the demo code.

More on Card Dragging

In the previous demo we allowed the user to right-click on a card and drag it around. When the user
released the button the card was dropped in a new position. We paid no attention to the card's status or to
the location it was dropped. In a real game we'd need to monitor all such activity.

Blocked Cards

QCard has two functions to set and query the blocked status of a card. A card can be marked as blocked if
it is covered or partially covered by another card. QCard lets us set the "blocked" status with
AdjustCardBlocked. We can query the "blocked" status of a card with GetCardBlocked. The API calls
look like this:

cal 1 dll #qgc, "AdjustCardBl ocked", _

nC as |long, _ "index of card to bl ock/unbl ock
bval ue as |ong, _ ' 1=bl ocked, O=unbl ocked
re as void "no return

calldl'l #gc, "GetCardBl ocked", _
nC as |l ong, _ "index of card to query
i sBl ocked as I ong ' 1=bl ocked, O=unbl ocked

Blocking Some Cards

In our demo, we'll change the display so that the rows of cards overlap. Each row is 20 pixels below the
previous row. When we deal the first three rows we'll also set the "blocked" status of each card in that row
to "blocked". We will leave the cards in the fourth row with the default "unblocked" status. We've
introduced a variable called "row" to keep track of the row being dealt.

page 1/8

/QCard09
/QCard11
https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce
/QCard01

Liberty BASIC Programmer's Encyc

x=10:y=2:row=1
for i =1to 24
Cal| Deal Card hBox,card(i), X,y
"When creating a row or pile of cards,
"only the topnost card should have an
"1 sBl ocked val ue of FALSE.
if row<4 then call AdjustCardBl ocked card(i), 1

x=x+100

i f x>510 then "nove to next row
x=10
y=y+of f set
r ow=r ow+1

end if

pl aywave "card.wav", sync

pause 100 m Il iseconds between cards
call Pause 100

scan

next

Aborting the Dragging Operation
QCard DLL captures mouse events from the time InitDrag is called until EndDrag is called. If for any

reason we need to abort the dragging procedure, we must call AbortDrag so that the DLL releases the
capture of mouse events.

calldll #gc, "AbortDrag", re as void

Preventing the Drag of Blocked Cards

When the user right-clicks the mouse we'll use InitDrag to discover which card in our card array was
clicked. InitDrag returns the index of the card at the given x,y location. We then query its blocked status.

If the card is blocked we document that at the bottom of the display and halt the routine with AbortDrag.
If it is not blocked, we begin the dragging procedure, as we did in the last lesson.

[initDrag]
car dl ndex=I ni t Dr ag(hBox, MouseX, MouseY)

page 2/ 8

Liberty BASIC Programmer's Encyc

i sBl ocked=Get Car dBl ocked(car dl ndex) "see if card is bl ocked
i f isBlocked<>0 then
"if card is blocked, informuser and abort drag operation
cal |l AbortDrag

#1.9
"place 10 420;\BLOCKED Card | ndex is ";cardlndex; space$(100)
wai t
end if

#1.9 "place 10 420;\Drag Card Index is ";cardlndex; space$(100)
#1.g "when rightButtonMve [doDrag]"”
wai t

In a real game you'd want to set the blocked status of the newly uncovered card to 0. You'd also need to set
the card that was just covered by the dragged card to "blocked". We did not complicate the code with
these routines in order to keep the demo program short and understandable.

Offset Value

QCard has a default offset value of 16 pixels. The cards are 70x95 pixels and if one card is displayed 16
pixels lower thena the card beneath both card values will be visible. This offset is important to the DLL
when it discovers which card is at MouseX and MouseY.

We can change the offset with SetOffSet. We change the offset to 20 pixels for this demo.

calldll #gc, "SetOfSet",
' change pixel offset for vertical coluns of cards
of fset as |ong, _ "nunber of pixels to offset
re as void

DEMO

See Lesson 1 for QCard DLL and WAV files needed for the demo code.

The demo deals the cards in four overlapped rows. It sets the blocked status of cards in the first three rows.
It checks the blocked status of the card clicked by the user. It allows the user to drag the card if the

designated card status is "unblocked". We've eliminated the shuffling routine to keep things simple for this
demo.

" An open project card game, begun by Alyce Watson, May 27, 2003.

page 3/8

/QCard01

Liberty BASIC Programmer's Encyc

"Uses (ard32.dll, a freeware library of playing card inmages.
"DLL by Stephen Murphy. Qcard32.DLL website:
"http://ww.teluspl anet. net/ public/stevent

di m card(24) "array to hold cards
gosub [fill CardArray] "fill array with card val ues

[var Set up]

I =0 "i will be our counter var in for/next |oops
of f set =20 "of fset for card vertical spacing for draggi ng purposes
nomai NWi n

W ndowW dt h=640: W ndowHei ght =480
Upper Lef t X=1: Upper Lef t Y=1

menu #1, "&File", "&New',[new],"E&it", [quit]
gr aphi cbox #1.g, 0, 0, 640, 440

open "Draggi ng Cards" for w ndow nf as #1

#1 "trapclose [quit]"

' get graphi cbox handl e
hBox=hwnd(#1. Q)

"open the dll

open "qcard32.dl " for dll as #qc
"initialize the deck

Call InitializeDeck hBox

[new]
Cal | Set Def aul t Val ues

"draw a ni ce background
#1.g "down; fill 10 190 225"
#1.g "backcol or 10 190 225"
"tenp nmessage for this deno only
#1.g "place 10 420"
#1.g9 "\ R ght -
click on a card, then nove nouse to drag and drop it."

of f set =20
call Set O fSet offset "set offset to 20 pixels - default is 16

"set xy location to start dea
x=10: y=2: row=1
for i =1to 24

Cal| Deal Card hBox,card(i), X,y

page 4 /8

Liberty BASIC Programmer's Encyc

"When creating a row or pile of cards,

"only the topnost card should have an

"1 sBl ocked val ue of FALSE.

if row4 then call AdjustCardBl ocked card(i), 1

x=x+100

if x>510 then "nove to next row
x=10
y=y+of f set
r ow=r ow+1

end if

pl aywave "card.wav", sync

pause 100 m | liseconds between cards
call Pause 100
scan

next

#1.g9 "when rightButtonDown [initDrag]"
wai t

[initDrag]
car dl ndex=I ni t Dr ag(hBox, MouseX, MouseY)
i sBl ocked=Get Car dBl ocked(car dl ndex) "see if card is bl ocked
i f isBlocked<>0 then
"if card is blocked, informuser and abort drag operation
cal |l AbortDrag

#1.9
"place 10 420;\BLOCKED Card I ndex is ";cardlndex; space$(100)
wai t
end if

#1.9 "place 10 420;\Drag Card Index is ";cardlndex; space$(100)
#1.g "when rightButtonMve [doDrag]"
wai t

[doDr ag]
cal|l DoDrag hBox, MouseX, MuseY
#1.g "when rightButtonUp [endDrag]"
wai t

[endDr ag]
#1.g "when rightButtonUp"
car dl ndex=EndDr ag(hBox, MouseX, MbuseY)
#1.9
"place 10 420;\Destination Card Index is ";cardlndex; space$(100)
wai t

page 5/8

Liberty BASIC Programmer's Encyc

[fill CardArray]
"fill card array
‘cards 1 to 52 are in the first deck
‘cards 53 to 104 are in the second deck
‘use cards Jack through King in each suit, first deck
card(1)=11 'jack of clubs
card(2)=12 ' queen
card(3)=13 'king
card(4)=24 ‘'jack of dianonds
card(5) =25 'queen
card(6)=26 'king
card(7)=37 'jack of hearts
card(8)=38 ' queen
card(9)=39 'king
card(10)=50 'jack of spades
card(11)=51 'queen
card(12)=52 'Kking

'now use second deck, to fill second half of array
for i =1to 12
card(i +12)=card(i) +52
next
RETURN

[quit] cl ose #qc:close #1:end

"subs and functions:
Sub Pause ns
'pause ns nunber of mlliseconds
cal 1 dl | #kernel 32, " Sl eep”, _
nms as long, re as void
End Sub

Sub Set O f Set of f set
calldll #gc, "SetOfSet", offset as |ong, _
re as void
end sub

Sub Adj ust CardBl ocked nC, bVal ue
cal 1 dll #qgc, "AdjustCardBl ocked", _
nC as long, bValue as long, re as void
end sub

page 6/ 8

Liberty BASIC Programmer's Encyc

Functi on Get Car dBl ocked(nC)
call dl'l #gc, "GetCardBl ocked",nC as |ong, _
Get Car dBl ocked as | ong
end function

Function InitDrag(hndle, x, y)
calldll #qgc, "InitDrag", _
hndl e as ulong, x as long, y as long, _
InitDrag as | ong
end function

Sub Abort Drag
calldll #qgc, "AbortDrag",re as void
end sub

Sub DoDrag hndl e, x,y
calldll #qgc, "DoDrag", hndl e as ul ong, _
x as long, y as long, r as void
end sub

Function EndDrag(hndl e, x, y)
calldl'l #gc, "EndDrag", hndle as ul ong, _
x as long, y as long, EndDrag as | ong
end function

Sub InitializeDeck hndle
calldl'l #gc, "InitializeDeck", _
hndl e as ulong,r as |ong
End Sub

Sub Deal Card hndl e, nC, x,y
'places card on wi ndow whose handle is hndle at x,y
'nC is nunber of card - 1-52 in first deck and
'53-104 in second deck, if used
calldll #qgc, "Deal Card", hndl e as ul ong, nC as | ong, _
x as long,y as long,r as void
End Sub

Sub Set Def aul t Val ues
"reset all card properties back to their default val ues.
calldll #qgc, "SetDefaultValues",r as void
End Sub

QCard DLL Lesson 10 | More on Card Dragging | Blocked Cards | Blocking Some Cards | Aborting the
Dragging Operation | Preventing the Drag of Blocked Cards | Offset Value | DEMO

page 7/ 8

Liberty BASIC Programmer's Encyc

Lesson 9 Lesson 11

page 8/ 8

/QCard09
/QCard11
http://www.tcpdf.org

	QCard10

