Liberty BASIC Programmer's Encyc

QCard32.DLL Documentation

Table of Contents

NOT ALL SMOKE AND MIRRORS

BOOL InitializeDeck(hWnd)

SetCurrentBack(nlndex)

SetDefaultValues()

SetCardStatus(nCard. bValue)

SetOffSet(nValue)

DrawCard (hWnd. nCard. nxLLoc. nvL.oc)

DealCard (hWnd. nCard. nx. ny)

DrawSymbol (hWnd. nValue, nx. ny)

DrawBack (hWnd. nValue. nx. ny)

RemoveCard (hWnd. nCard)

GetCardColor(nCard)

GetCardSuit(nCard)

GetCardSuit(nCard)

GetCardStatus(nCard) AND SetCardStatus(nCard. bStatus)

GetCardBlocked(nCard) AND AdjustCardBlocked(nCard. bValue)

IsCardDisabled(nCard). SetCardDisabled(nCard. bValue)

GetCardX(nCard) AND GetCardY (nCard)

SetCardX(nCard) AND SetCardY (nCard) Subs

GetUsern(nCard) & SetUsern(nCard. nValue)

page 1/ 13



Liberty BASIC Programmer's Encyc

InitDrag(hWnd. nx, ny)

AbortDrag() Sub

DoDrag(hWnd. nx, ny) Sub

BlockDrag(hWnd, Cardlist(0). nNumCards, nx, ny)
EndDrag(hWnd, nx. ny)

EndBlockDrag(hWnd, CardList(0), nNumCards, nx. ny) Function
ReturnDrag(hWnd. nCard. nxLoc, nyl.oc)
ReturnBlockDrag(hWnd, CardList(0), nNumCards, nxLoc, nyl.oc)
DRAGGING

A Simple Single Drag Example

Avoiding Problems

NOT ALL SMOKE AND MIRRORS
QCard32.DLL Subs and Functions

Once you have included the sub and function declarations in your Global Module, you can call
QCARD32.DLL functions just as if you were calling any other function or sub in VB. The following
sections list each function and sub and describes what it does. In this documentation, any parameter which
begins with n, such as nCard, indicates that that value should be an integer. Any parameter which begins
with b, such as bValue, indicates that that value should be a Boolean, TRUE or FALSE. CALLING
THESE SUBS AND FUNCTIONS WITH VALUE TYPES OTHER THAN THOSE INDICATED IS A
GOOD WAY TO LOCK UP YOUR SYSTEM! Always save your work before you run a routine to test it,
especially the Block Dragging routines. If you pass these routines an improper value, you will be dumped
out of VB and any of your unsaved work will be lost. Not a big deal, that's all part of the Windows
programming experience!

Just remember to save your work first.

BOOL InitializeDeck(hWnd)

page 2/ 13



Liberty BASIC Programmer's Encyc

Only call this function once in your application. Did you catch that? I said "ONLY CALL THIS
FUNCTION ONCE IN YOUR APPLICATION!!". One call to this function is all that's required for
QCARD32.DLL to operate; any more calls than that, and you will get screwy things happening in your
game. This sets up all the card pictures and values within the DLL. You can make this call in your
Form.Load event, passing it the handle of the window in which you will be working. This function returns
TRUE if it is successful and FALSE if it fails. You should always check the return value of this function
and act accordingly if it fails. For example:

nReturnValue = InitializeDeck(Form1.hWnd)
If nReturnValue = FALSE Then

MsgBox "Unable to Initialize QCard32.DLL"
' bail out now!

End

End If

Generally, the InitializeDeck function will only return a FALSE value if the DLL is unable to load up its
card bitmaps. In the 16-bit version of Qcard.DLL, only one application could use the DLL at one time. In
the 32-bit environment, this restriction is removed. When your application ends, QCARD32.DLL is
released and unloaded by Windows. You may find that if your application dies and ends prematurely when
you are designing and running it, due to a General Protection Fault on your part, Windows might not
properly unload the DLL. You will have to restart Windows again to clear the DLL out of memory before
you can continue debugging your game. Under normal conditions, the DLL will be unloaded automatically
by Windows.

SetCurrentBack(nIndex)

In addition to the DrawBack Sub, which draws one of six card back designs in your window, you can also
use the regular card drawing and dealing subs with card numbers 105 through 109 to draw card backs.
Cards numbered 105 through 109 act just like other cards, but their picture is a card back design rather
than a card front design. This allows you to manipulate 5 facedown cards in the same way you can the
other regular cards. The picture is the same for all five cards and is initially set at cardback design number
1. Call SetCurrentBack(nlndex), where (nIndex) is a number between 1 and 6, to change these cards to a
different design. You may call SetCurrentBack(nIndex) any number of times to change card backs during
your game, but remember to re-draw any previously dealt face-down cards to reflect the new choice.

You can also use cards 105 through 109 to display a pile of cards that dwindles as the user clicks on the

pile, as in Windows Solitaire. To achieve this effect, first draw the "O" symbol on your form. Then deal
card 105 directly on top of it. Then deal cards 106 through 108, each time offsetting their x and y by 2.

This creates a nice 3-D stack effect. You will need to block all the cards except the top one (108 in this

example). As an example, part of your MouseDown Event might look like this:

page 3/ 13



Liberty BASIC Programmer's Encyc

Dim Shared nTopCard As Integer
nTopCard = 108

nSourceCard = InitDrag(Form1.hWnd, x, y)
If nsourceCard = nTopCard Then
RemoveCard nTopCard

SetCardDisabled nTopCard, TRUE
AdjustCardBlocked nTopCard - 1, FALSE
nTopCard = nTopCard - 1

End If

AbortDrag

This partial code sample is just to get you started. To create a fully developed card pile, you will need to
add much more functionality to the routine.

SetDefaultValues()

Use this sub to reset all card properties back to their default values. A good time to use this is right before
setting up a fresh deal, so you can be sure all previous values are flushed out. It has no parameters. Call this
routine as many times as you want during the course of your game.

SetCardStatus(nCard, bValue)

This Sub allows you to change any cards from their default setting of faceup to facedown. If you set a
card's status to facedown, i.e., SetCardStatus (1, FALSE), it will be treated as facedown by the DLL when
it is drawn or dragged. The image used for the facedown image will be that set by the
SetCurrentBack(nIndex) Sub. Simply set the Status of any cards in your game which will be dealt
facedown to FALSE, and then deal them as normal. They will be drawn facedown. To flip them faceup,
set their Status to TRUE with SetCardStatus(nCard, TRUE), and use DrawCard to draw them faceup at
their current location.

SetOffSet(nValue)

If you want to use QCard32.DLL for dragging blocks of cards in your game, you must deal cards in
vertical columns as in Windows Solitaire. By default, cards in each column should be offset 16 pixels
down from each other. If you wish to use a different vertical spacing in your game (other than 16 pixels),
inform the DLL of the new spacing value with this Sub. nValue is the new value which will be used by the

page 4/ 13



Liberty BASIC Programmer's Encyc

DLL to carry out block dragging.

DrawCard (hWnd, nCard, nxLoc, nyLoc)

This is the quickest and easiest way to draw a card onto your window. Simply pass it your window handle,
the number of the card you want drawn, and the x, y location you want the card to appear at. The
DrawCard sub does not update any of the card's data members, such as its x or y location. If your
application does not require any of this other information, this may be the only drawing sub you need to
use. You cannot implement dragging operations if this is the only sub you use to draw your cards, however.
Again, this does not update any of the card's data members. It just draws the card on the screen. It is fast
and simple. (This makes it good for redrawing items for screen updates, as well).

DealCard (hWnd, nCard, nx, ny)

The DealCard sub does many important things over and above the DrawCard sub. It updates the card's X
and Y properties to the location you deal the card. Most importantly, it grabs from the video display that
portion of the screen your card will be covering over. That is, it keeps a copy of the image which lies
behind that card. This is very crucial when you go to drag a card, because whatever used to be behind the
card has to be replaced on the video display. If you are going to be doing any dragging, you must place
your cards on the screen using the DealCard sub. If you try to drag a card that was originally drawn using
the DrawCard sub alone, you will end up with a video mess.

Please note: the cards in QCARD32.DLL adapt to any background color your window may have. You can
feel free to include an option for the user to change window colors in your game knowing that funny
colored corners will not appear on the cards if the background color changes. One warning, however. As
has been mentioned, each card carries with it a copy of the screen image which lies behind the card, for
dragging purposes. If you deal the cards on a green background, and the user changes color to a red
background, your card's background images will still reflect a green background. Not a pretty sight when
he starts dragging! When changing screen colors in midstream, you should:

- Remove your cards from the screen

- Repaint the window to the new color
- Use the DealCard sub to replace your
active cards at their proper location

Doing this will ensure that their background images correspond to the present background color.

page 5/ 13



Liberty BASIC Programmer's Encyc

DrawSymbol (hWnd, nValue, nx, ny)
This sub draws the basic X, O and place holder symbols. It requires the hWnd of your form, a symbol
value and an x and y position where you want the symbol drawn. Valid values are 1 for an X, 2 for an O,

and 3 for the place-holder. These symbols feature a gray background rather than the usual black. They will
show up on any background color, including very dark colors.

DrawBack (hWnd, nValue, nx, ny)

This sub draws one of the six included cardback designs at the location x, y. Valid values are 1 through 6
inclusive. Use Card numbers 105 to 109 if you want actual cards that show the current cardback as their
image. The DrawBack Sub only draws a picture of the selected cardback on the screen.

RemoveCard (hWnd, nCard)

This sub removes the card from the window display assuming two things are true: First, the card must have
been originally placed on the window using the DealCard sub. Second, the card must not be overlapped
from above in any way. This sub actually repaints the card's background image where it used to be.

GetCardColor(nCard)

This function returns the color of the card specified. It returns 1 for a black card, 2 for a red card.

GetCardSuit(nCard)

This function returns the suit of the card specified. It returns 1 for Clubs, 2 for Diamonds, 3 for Hearts, 4
for Spades.

GetCardSuit(nCard)

This function returns the suit of the card specified. It returns 1 for Clubs, 2 for Diamonds, 3 for Hearts, 4
for Spades.

page 6/ 13



Liberty BASIC Programmer's Encyc

GetCardStatus(nCard) AND SetCardStatus(nCard, bStatus)

This Function and Sub pair can be used to get the current faceup/facedown status of a card, and also to
change the current faceup/facedown status of a card. All cards originally have a Status of TRUE, or
faceup. If you want some cards to be facedown, set their Status to FALSE with SetCardStatus(nCard,
FALSE). Those cards will be handled as facedown by the DLL when they are subsequently drawn, dealt or
dragged.

GetCardBlocked(nCard) AND AdjustCardBlocked(nCard,
bValue)

These get and set the IsBlocked value of a card. You will have to pay particular attention to this property if
you will be doing any dragging. Imagine Windows Solitaire. When the user presses the mouse button down
over a card, the cursor may actually be over many cards in a pile. A technique is required which allows the
application to determine which of those cards should actually be selected. QCARD32.DLL uses a method
of putting a block on all cards covered over by another card. This is your responsibility to maintain.

When initializing a drag event, QCARD32.DLL first checks for any unblocked cards under the mouse
cursor. If it finds one, it will return the number of that card. This initiates a Single drag operation. If it
doesn't find one, it then determines if it is in the top 16 (or user defined OffSet) pixels of any other card,
including blocked cards. If it is, it returns the number of that card. This initiates a Block drag operation. If
you maintain your cards in proper blocked and unblocked fashion, you will have no trouble dragging single
or groups of cards in the same way as Windows Solitaire. When creating a row or pile of cards, only the
topmost card should have an IsBlocked value of FALSE. Remove a block by calling
AdjustCardBlocked(nCard, FALSE). Block a card by calling AdjustCardBlocked(nCard, TRUE).

IsCardDisabled(nCard), SetCardDisabled(nCard, bValue)

You can set a card's Disabled property to TRUE so it can no longer be selected by the mouse for drag
operations. Again, imagine Windows Solitaire. Even when cards are played to their top, final locations,
they can be dragged down again and replaced on the lower piles. If you do not want "finished" cards to be
replayed like that in your game, you can set their Disabled property to TRUE with
SetCardDisabled(nCard, TRUE). Then the user will no longer be able to drag them back down into play.

page 7/ 13



Liberty BASIC Programmer's Encyc

GetCardX(nCard) AND GetCardY(nCard)

Use these functions to get the x and y location properties for a card. These are pixel coordinates based on
0, O in the top left corner of the window you are working in. These, along with SetCardX and SetCardY,
are very useful for drawing and relocating cards around your window. For example, when the user drags a
card over onto a new pile and lets it go, you will want to relocate it and snug it up below the previous card:

nDestCard = EndDrag Form1.hWnd, x, y
nNewX = GetCardX(nDestCard)

nNewY = GetCardY (nDestCard)

RemoveCard Form1.hWnd, nSourceCard

" using the default value of 16 for OffSet

DealCard Form1.hWnd, nSourceCard, nNewX, nNewY + 16

SetCardX(nCard) AND SetCardY(nCard) Subs

Use these two Subs to change the current X or Y setting of a card. Although this changes the value of X or
Y, it does not move the card to the new location.

GetUsern(nCard) & SetUsern(nCard, nValue)

Use these subs and functions to get and set values of your choosing which you can associate with any of
your cards. User] is a Boolean TRUE and FALSE value. User2, User3 and User4 are all Integer types. You
can use these any way your application requires. For example, you can call SetUser4 12, 1000 to set a User
value of 1000 to card 12, and retrieve that value later by calling nMyValue = GetUser4(12).

These can come in handy in a variety of ways. In the demo program, they are used them to keep track of
which array each card belongs to and its position in the array. This makes it easy to move cards from one
pile (array) to another as the game executes.

InitDrag(hWnd, nx, ny)

Use this function in a MouseDown event to start a drag operation. The function searches through all cards
to determine if the mouse cursor is over any card whose IsBlocked property is FALSE. If it finds one, it
returns the number of that card. If it does not find one, it searches through all the cards in the deck to see

page 8/ 13



Liberty BASIC Programmer's Encyc

if the mouse lies in the top 16 (or User-Defined OffSet) pixels of any card, blocked or not. If it does, it
returns the number of that card.

By checking the IsBlocked property of this returned card, you can tell if the user wants to carry out a single
drag or a block drag. If InitDrag returns a value of 0, the mouse is not currently located over any card. The
InitDrag function should always be followed by a corresponding AbortDrag, an EndDrag or an
EndBlockDrag call. This is due to that fact that InitDrag "captures" all mouse input, and requires one of
these corresponding calls to release the capture. The values nx and ny are the current mouse coordinates.

AbortDrag() Sub

This sub ends any drag operation started by an InitDrag call. AbortDrag releases the mouse which is
captured by InitDrag. Abort drag takes no other action.

DoDrag(hWnd, nx, ny) Sub

Carries out the drag operation which was initiated by InitDrag call. DoDrag moves the current Source Card
to its new location. Values nx and ny are the current mouse coordinates.

BlockDrag(hWnd, CardList(0), nNumCards, nx, ny)

BlockDrag carries out a block drag operation which was initiated by an InitDrag call. It requires a list of
cards to be dragged in the form of an array. The array can be passed to the sub using the array's first
element (0). The sub also requires the number of cards to be dragged as well as the current mouse
coordinates.

EndDrag(hWnd, nx, ny)

EndDrag ends a single drag operation and returns the number of the Destination card (that is, the card it is
being dropped on), if any. It searches the deck for any card which overlaps the Source Card and whose
IsBlocked property is FALSE. If it finds one, it returns the number of that card. The function also releases
the mouse which was captured by the InitDrag call.

EndBlockDrag(hWnd, CardList(0), nNumCards, nx, ny) Function

page 9/ 13



Liberty BASIC Programmer's Encyc

EndBlockDrag ends a block drag operation which was initiated by an InitDrag call. The function searches
through the deck for any card which overlaps the Source Card and whose IsBlocked property is FALSE. If
it finds one, it returns the number of that card. The function also releases the mouse which was captured
by the InitDrag call. The function requires a list of the cards being dragged in the form of an array. The
array can be passed to the function using the array's first element. The function also requires the number
of cards being dragged and the current mouse position.

ReturnDrag(hWnd, nCard, nxLoc, nyLoc)

This sub drags the card nCard to the location nxLoc, nyLoc along a straight line from its current location.
Return drag can be used for returning cards to their original location after an invalid drag operation. (That
is, drag operations that your game determines to be invalid).

ReturnBlockDrag(hWnd, CardList(0), nNumCards, nxLoc,
nyLoc)

This sub drags a block of cards to the location nxLoc, nyL.oc along a straight line from their current
location. It can be used to return a block of cards to their original location if your game determines the
user has dragged them somewhere they shouldn't be.

DRAGGING

Although dragging is made easier using QCARD32.DLL, it is still a complex operation and one that will
prove a little tough when you first try to implement it. Still, if your application is well organized and
thought out, you will be able to include dragging operations with no problems.

A Simple Single Drag Example

When dragging cards, you will need to provide code for three events in relation to the Form you are
working with. These are the MouseDown, MouseMove and MouseUp events. In the MouseDown event,
you will initialize the drag operation. In the MouseMove event, you will carry out the drag operation. In the
MouseUp event, you will end the drag operation. Of course, these events are happening all the time as your
application is running, so you will need a switch to indicate whether a drag is in progress or not. For this
purpose, create a Shared Integer variable in your General section which you can set to the Boolean values
of TRUE and FALSE as your application runs:

page 10/ 13



Liberty BASIC Programmer's Encyc

Dim Shared bDragging

Initially, in your Form's Load procedure, this should be set to FALSE. In this simple example, begin by
dealing a single card on your form:

DealCard Form1.hWnd, 1, 10, 10

This will deal the Ace of Clubs at location 10, 10 on your form. In response to the MouseDown event, we
need to determine if the mouse is currently on the card or not. If it is, we can set the bDragging switch to
TRUE. If not, we need to cancel the drag operation by calling the AbortDrag sub. The following code
handles the MouseDown event:

Dim nSourceCard as Integer

nSourceCard = InitDrag(Form1.hWnd, x, y)
if nSourceCard = 0 Then

AbortDrag

Else

bDragging = TRUE

End If

The InitDrag function does several things. First, it takes the X, y mouse coordinates you pass it, and it looks
through all the cards in the deck to see if any card lies underneath that location. If there is a card at that
location and its IsBlocked and Disabled properties are both FALSE, it returns the number of that card. We
can assign this value to the nSourceCard variable. In this case, this value will be 1, since that is the only
card we have dealt on our form. If the InitDrag function cannot find a card at that mouse location, it will
return a value of 0. In this case, we will need to abort the drag operation. Always follow up an InitDrag call
with either an AbortDrag call or an EndDrag call. One of the things that InitDrag does is capture all mouse
movements. You need to release the mouse capture by calling either AbortDrag or EndDrag, otherwise
your application will effectively lock up your system since it is collecting all mouse information and
directing it only to itself.

If no card is selected, we can abort the drag right here. If one is selected, we will release the mouse in the
MouseUp event procedure. In the MouseMove event procedure, we need to test whether or not a drag is in
progress. If it is, we will carry out the drag, if not, we don't need to do anything. Here is the MouseMove
procedure:

If bDragging = TRUE Then
DoDrag Form1.hWnd, x, y
End If

The DoDrag sub moves the card to its new location and updates its X and Y properties accordingly. The
card which moves is the one selected by the InitDrag function. If bDragging = FALSE, nothing happens.

page 11/13



Liberty BASIC Programmer's Encyc

In the MouseUp event procedure, we need to end the drag if one is in progress. Here is where we will call
the Endrag function, thereby releasing the mouse capture:

Dim nDestCard As Integer

If bDragging = TRUE Then

nDestCard = EndDrag(Form1.hWnd, x, y)
bDragging = FALSE

End If

The EndDrag function does several things. Most importantly, as mentioned, it releases the mouse capture
so mouse information can once again go to other applications other than this one. It also relocates the card
to its new location and updates its X and Y properties accordingly. Finally, it checks to see if any other
card lies beneath the card that has just been dragged and dropped. If there is a card that you have just
covered over and that card's IsBlocked property is FALSE, the EndDrag function will return the number of
that card. We assign that value here to the nDestCard variable. If there is no such card beneath the just
dragged card, the function returns 0.

In this example, we declared the two variables nSourceCard and nDestCard as local to their respective
Subs. In a real application, you would declare them as Shared or Global so you could carry out some
comparison and testing on them. Since we now know the number of the Source card and the number of the
Destination card, we could test whether or not this is a valid drag. In a game like Windows Solitaire, for
example, where you can place a card of one less value on top of a card of the opposite color, some of the
testing might look like this:

Dim nSourceColor As Integer

Dim nSourceValue As Integer

Dim nDestColor As Integer

Dim nDestValue As Integer

Dim bValidDrag As Integer

nSourceColor = GetCardColor(nSourceCard)
nDestColor = GetCardColor(nDestCard)
nSourceValue = GetCardValue(nSourceCard)
nDestValue = GetCardValue(nDestCard)

If nSourceColor nDestColor And nSourceValue = nDestValue - 1 Then
bValidDrag = TRUE

Else
bValidDrag = FALSE
End If

QCARD32.DLL provides a nice little routine for handling invalid drags. In your MouseDown event
procedure, you can save the original location of the Source Card before dragging it. Declare two Shared or
Global variables called OldX, and OIdY, and assign them as follows in your MouseDown procedure:

page 12/13



Liberty BASIC Programmer's Encyc

OldX = GetCardX(nSourceCard)
0OldY = GetCardY (nSourceCard)

Then, in your MouseUp event procedure, if you determine through comparison that this Source Card does
not really belong on this Destination Card, then you can send it back to where it came from by calling:

ReturnDrag Form1.hWnd, nSourceCard, OldX, OldY

The ReturnDrag sub will automatically drag a card from its current location to the x, y location specified.
It drags the card along a nice straight line. You may also find the ReturnDrag sub useful in other situations.

Avoiding Problems

To avoid problems, just think of the cards in your game as being real cards in a three dimensional sense.
At any given time, some of the cards in your game will be standing alone in the open while others will be
blocked in a pile with other cards. Problems arise when you allow the user to do a Single Drag operation
on a card which is covered over by another card. This produces some unsightly video results. Instead, you
must think in terms of "Last Card On, First Card Off". In doing this, you must dynamically maintain the
IsBlocked status of all the cards in your game. Only free standing cards in the clear should have an
IsBlocked status of FALSE. All other cards should have an IsBlocked status of TRUE.

Although you do not have to use arrays in your game, arrays representing piles of cards makes things much
easier to maintain. As cards are dragged from one pile to another, you can update the IsBlocked properties
for the affected cards in each array. For example, if dragging a single card from the bottom of one row of
cards to the bottom of another row, you would unblock the last card which was freed up in the original
row, block the last card in the destination row which is now covered by the new card, remove the card
from the original row's array of members, and add the new card to the destination row's array of members.
If you think the problem out carefully, you can arrange the data in your game so this process is handled
automatically as your game executes. See the demo program for an example of one way to do this.

page 13/13


http://www.tcpdf.org

	QCardDocumentation

