Liberty BASIC Programmer's Encyc

Table of Contents

Precision and Scientific Notation in Liberty BASIC

Precision and Rounding

Precision and Accuracy

Scientific Notation

General Function for Scientific Notation

General Rounding Function

What's Wrong with Using USING() for Rounding?

Bevond Double Precision

Precision and Scientific Notation in Liberty BASIC

Reproduced with minor editing from Newsletter 139
copyright 2005, Grahame King

This is a brief outline of the most a Liberty BASIC programmer is likely to need to know about precision
and scientific notation. This article will probably be of most interest to science students and includes
functions they can incorporate into their programs for outputting numbers in scientific notation.

Precision and Rounding

ALL numbers in Liberty BASIC are stored and manipulated in double precision. This means that if there
is an error from the computer's limit on how many decimal places it can keep, it will appear in the 15th
digit after the decimal point. Missing a few points at the fifteenth decimal is the equivalent of a few people
going missing out of a population about 500,000 times the earth's population. Accurate enough for
government work and even most scientific and engineering work.

Such tiny errors can occur with no calculation as soon as the data is input because of the way numbers are
stored internally, particularly the limited amount of storage devoted to the part of the number after the
decimal point. Such errors have been demonstrated in the conforums posts in threads on "Rounding".

page 1/6

Liberty BASIC Programmer's Encyc

Rounding, as most readers will know, is a controlled lowering of precision by "correcting" to the nearest
whole number of a specified position in the decimal representation. To see this in action, run the final
demo below.

You can most simply output numbers to the desired precision, using the USING() function of LB. If you
never use more than 14 # characters after the decimal point you will never see these tiny errors - and why
would you want to?

Once again, see the final demo in this article for an example of rounding.

Precision and Accuracy

There is a technical distinction between precision and accuracy. Accuracy refers to the degree of error
potentially inherent in a measurement. Precision is about the amount of fine information in the numerical
expression of the measurement. You can have a high precision expression of a low accuracy measurement
- very misleading at best. And you can have a low precision expression of a highly accurate measurement -
possibly a bit wasteful of good information. The two terms are sometimes used interchangeably.

Scientific Notation

For very large and very small numbers, scientists long ago agreed on a standard way of representing them
so that they would all be easily able to compare results. This became the standard for all numbers in
scientific and engineering journals.

The syntax is:

D.d{d}eN

D - is a single digit between 1 and 9 before the decimal point

d - represents digits after the decimal point which may be zero

e - is the letter "e"

N - is a positive or negative integer called the exponent representing the power of ten to multiply by
Examples:

1.234e3 =1.234x 10 x 10 x 10 = 1.234 x 1000 = 1234

9.67e-7 =9.67 x (1/10000000) = 0.000000967

So a positive exponent means "shift the decimal point this many places to the right”

and a negative exponent means "shift the decimal point this many places to the left".

We can represent any number in this form except zero. The scientific notation for zero is O - though some

page2/6

Liberty BASIC Programmer's Encyc

sticklers may put Oe0.

The part of the number before the "e" is usually called the mantissa but may also be called the significand
(sic).

General Function for Scientific Notation

The following LB function will represent any number (positive or negative or zero) in scientific notation.

Try entering any numbers you want. Note especially how the system represents small numbers like
0.0000000000067 in an exponential form but not the standard scientific notation. The function given will
"fix" these and will accept any non-standard exponential form such as 234.76e-7 thanks to the latest
expansion of LB.

test programfor scientific notation function
" released to public domain, August 2006 by G ahanme King
a=1

whi |l e a<>0

i nput "test nunber ="; a

a$ = str$(a)

print "test nunber as string = "+a$

print "test nunber in scientific notation = "+ScNotation$(a)
wend

end

function ScNotati on$(num n)

" function to express a nunber as a string in 'scientific notation”
if numn = 0 then ScNotation$ = "0" : exit function

' separate nunber into sign, significant nunmeric part (mantissa), and
exponent

" first extract the sign

absNum n = abs(num n)
sgnNunm n = absNuni n/ num n
if sgnNum n>0 t hen
sgnNum n$ = ""

el se

sgnNum n$ = "-"

end if

represent unsigned nunber as a string using str$

absNum n$ = str$(absNuni n)

" find the "e" in case LB has already put it in a formw th an exponen
t

inde = instr(absNum n$, "e")

page 3/6

Liberty BASIC Programmer's Encyc

if inde>0 then
expon = val (m d$(absNum n$, i nde+1))
manti ssa$ = m d$(absNum n$, 1, i nde- 1)

el se

expon = 0

manti ssa$ = absNunl n$
end if

nove the decinmal point in the old mantissa so that there is just one
nonzero digit in front of it

and adj ust the exponent accordingly

" start by finding the decimal point and breaking mantissa into its wh
ole part and fractional part

i ndDot = instr(mantissa$,".")

if indDot = 0 then ' for integers

i ndDot = | en(manti ssa$)

whol e$ = manti ssa$

fract$ = ""

el se

whol e$ = mi d$(nmanti ssa$, 1, i ndDot - 1)

fract$
end if
while val (whole$) > 9 ' to nove decinal point to the left if necessary
i ndDot = indDot-1

fract$ = right$(whol e$, 1) +fract$

' add the last digit fromthe whole nunber part to the beginning of fr
act$

whol e$ = | ef t $(whol e$, | en(whol e$) - 1)

' and then renove that digit fromthe whol e$

expon = expon+l ' adjust exponent to keep the net result correct
wend

whil e val (whol e$) <= 0

" to nove decimal point to the right if necessary

i ndDot = i ndDot +1

whol e$ = whol e$+l eft $(fract$, 1)

' add the first digit of fractional part to the whol e nunber part
fract$ = m d$(fract$, 2)

" and then renove that digit fromthe beginning of the fractional part
expon = expon-1 " adjust exponent to keep the net result correct
wend

" build Scientific Notation string fromthe three parts - sign, new nma
nti ssa and new exponent

ScNot ati on$ = sgnNum n$+st r $(val (whol e$)) +". "+fract $+"e" +st r $(expon)
end function

m d$(mant i ssa$, i ndDot +1)

General Rounding Function

page 4 /6

Liberty BASIC Programmer's Encyc

The following LB function will round any number (positive or negative) to any number of places. For run-
of -the-mill accounting applications, simple rounding to two decimals with the USING function should do.

deno of rounding with over-

USI NG reasonabl e USING and the round() function bel ow

num = 77725. 214 +0. 0005

print num "fromprint num wth no formatting in print statenent”
pri nt

print "The next three lines wth the using function show what over-
preci si on does."

print "77725.214 = ", usi ng("####H. #HAHHBHHRHHBRERPR" |, 77725, 214)
print " 0.0005 = ", using("#####. ###H##HH##H#AH#AHH" | 0. 0005)

print "77725.214 +0.0005 = ", using("#####. #HHBHHBHHBHHHFHAR" | nUN)
pri nt

print "Precision wthin double-
preci si on bounds renoves the w erdness:"”

print "77725.214 = ", using("####H. #HAHAHAR" | TTT725. 214)
print " 0.0005 = ", using("#####. ########" , 0. 0005)

print "77725.214 +0.0005 = ", using(" #####. #HH#H#H#AH" |, nUumM)
pri nt

print "Using the mat hematical rounding function:-"

pri nt

"Rounding to 4 decimals, 3 decimals, and finally to the nearest t
housand: "

for i =-4to 3

print using("##",i); " ... "; round(numi)

next

end

function round(x, pl aces)

"positive "places" rounds to whol e nunber places,

'negative "places" rounds to fractional places

round = sgn(x)*int((abs(x)*10"(-1*pl aces))+0.5)*(10"pl aces)
end function 'round

function sgn(x)

if x<0 then
sgn = -1

el se

sgn = 1

end if

end function

sgn

What's Wrong with Using USING() for Rounding?

Nothing most of the time. The main advantage of the mathematical form is that it easily handles variable

page5/6

Liberty BASIC Programmer's Encyc

precision. Suppose you want to vary the number of decimal places in your output depending on the results
of a set of calculations without knowing before hand what format will be required. This is messy to do
with the using() function particularly if you can't predict where the decimal point might be.

Beyond Double Precision

Finally, if you're thinking of doing calculations which will produce results smaller than say about 1.0e-10,
you will need to be very mathematically savvy in how you go about it. I imagine only scientists and pure
mathematicians might be interested in doing this and they would need to know where to learn about
techniques for ensuring accurate results. Remember that 1.0e-8 squared is O to double precision, so if you
are evaluating expressions containing squares and cubes etc, your results can quickly become hopelessly
inaccurate as the input numbers become smaller.

Table of Contents

Precision and Scientific Notation in Liberty BASIC

Precision and Rounding

Precision and Accuracy

Scientific Notation

General Function for Scientific Notation

General Rounding Function

What's Wrong with Using USING() for Rounding?

Bevond Double Precision

page 6/6

http://www.tcpdf.org

	Scientific precision

