Liberty BASIC Programmer's Encyc

Segments and Flushing

Alyce

Segments and Flushing | Graphics and Memory | CLS | FLUSH | FLUSH SEGMENT NAME | SEGMENT
| SPRITES | DISCARD | REDRAW | DELSEGMENT | DEMO

Graphics and Memory

Liberty BASIC graphics consume memory. Each graphics command is written to memory to something
called a metafile. If many graphics are drawn, memory resources may become low. This can make a
program and a system perform sluggishly. It can even cause a program to crash. You can avoid this
problem with proper graphics memory management. There are three commands that release memory
consumed by graphics: CLS, DISCARD, and DELSEGMENT

CLS

The CLS (CLearScreen) command clears the graphics area and releases all memory consumed by graphics.
This will work fine if there is no need to remember previous drawing routines, and if the flickering
associated with clearing the screen is acceptable in a program.

FLUSH

The FLUSH command may be a bit confusing. In other areas of life, the word flush may mean to remove
things, or to clean things out. We flush the old antifreeze from our radiators so that we can fill them with
new antifreeze, just as one example. In Liberty BASIC, FLUSH has a unique meaning. It means "make
graphics persist". Graphics drawn on a graphics window or graphicbox will disappear if the window is
obscured or minimized. If we issue a FLUSH command, the graphics will persist so that they will still be
visible when the window is again made visible.

syntax: print #handle, "flush"

Each time the FLUSH command is issued, a "drawing segment" is created. All drawing operations that are
accomplished in between FLUSHes (or from the beginning to the first FLUSH command) are part of a
drawing segment. Each of these segments has an ID number. A FLUSH command closes the current
drawing segment and increments the ID by 1.

page 1/6

https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce

Liberty BASIC Programmer's Encyc

FLUSH SEGMENT NAME

syntax: print #handle, "flush segmentName"

This command ensures that drawn graphics persist. It assigns a name to the flushed segment. This assigned
name can be used by DELSEGMENT and REDRAW to manipulate the segment.

SEGMENT

You can retrieve the segment number (segment ID) of the current drawing segment with the SEGMENT
command. It looks like this:

syntax: print #handle, "segment variableName"

as it might look in a program:

print #1, "segnent seglD"
notice "Drawi ng segnent is ";seglD

After this command is issued, the segment ID number will be contained in the receiver variable. This is the
ID for the segment that is currently open. The first segment begins with the first graphic command and
ends with the first FLUSH command. All segments after that are contained between FLUSH commands.
To get the ID of a segment, use the SEGMENT command right before the FLUSH command. Segment
IDs are used to DISCARD or REDRAW individual segments. The receiver variable can be named as
desired, and it is advantageous to use discriptive names for it. For instance, if a circle has been drawn, you
might call the segment "circleID".

The segment ID for each segment doesn't change, regardless of any additions or deletions of other
segments.

SPRITES

Segments and flushing do not apply to sprite graphics placed on the screen with DRAWSPRITES. If sprite
graphics are flushed by using GETBMP, DRAWBMP, FLUSH then this sequence does constitute a
drawing segment.

page2/6

Liberty BASIC Programmer's Encyc

DISCARD

This causes all items drawn since the last flush to be removed from memory immediately. Discard does not
force an immediate redraw, so the items that have been discarded will still be displayed until a REDRAW
(see REDRAW below).

syntax: print #handle, "discard"

as it might appear in a program:

print #1, "discard"

REDRAW

This command has multiple forms. The first form will cause the window to redraw all flushed drawn
segments. Any deleted segments will not be redrawn (see DELSEGMENT below). Any items drawn since
the last flush will not be redrawn either, and will be lost.

syntax: print #handle, "redraw"

as it might appear in a program:

print #1, "discard; redraw'
The second form of the command allows us to redraw a specific drawing segment.
Syntax: syntax: print #handle, "redraw "; idNum

Let's imagine that we've filled the screen with blue and drawn a pink circle and a green box in the first
drawing segment, which we close with a FLUSH command. We issue other drawing commands later in the
program, but later still, we went to display that first segment again. Knowing that this is the first segment,
we can issue a REDRAW command like this:

print #1, "discard; redraw'

Any segment may be redrawn in this fashion, as long as it hasn't been deleted with DELSEGMENT (see
below), or by the CLS command. We can retrieve the ID of a drawing segment and store it in a variable
for use later with the SEGMENT command, which is explained above. If we have placed a particular
segment ID into a variable called "myID", then we redraw that segment like this:

page 3/6

Liberty BASIC Programmer's Encyc

print #1, "redraw 1"

The third form of REDRAW causes a named segment to be redrawn. The name was assigned by the
programmer when the FLUSH command was issued.

syntax: print #handle, "redraw "; segmentName

It might look like this in a program:

#1 "flush nmySegnent ™"
#1 "fill green”
#1 "redraw nmySegnment "

DELSEGMENT

This causes the drawn segment identified to be removed from the window's list of drawn items. The
memory that was consumed by the drawn segment is reclaimed by the operating system. When the window
is redrawn, the deleted segment will not be included in the redraw. It will not be possible to redraw this
segment with the REDRAW command.

The first form deletes a segment according to ID number.

syntax: print #handle, "delsegment n"

As it might appear in a program:

"with hard-coded | D nunber:
print #1, "del segnent 2"

"or with I D nunber contained in a vari abl e:
print #1, "del segnent ";nylD

The second form of DELSEGMENT deletes a segment according to the name given it by the programmer
when the FLUSH command is issued.

syntax: print #handle, "delsegment segmentName"

page 4 /6

Liberty BASIC Programmer's Encyc

DEMO

The following small program illustrates how to flush graphics, how to obtain segment IDs, how to discard
grahics, and how to redraw individual segments.

nomai NW n

button #1.redraw, "Redraw',[newDraw, UL, 10,10, 120,24
open "Flush and Redraw Denp" for graphics_nf _nsb as #1
#1 "trapclose [quit]"

#1 "down; fill yellow size 5"

#1 "col or darkgreen; backcol or green”
#1 "place 10 70; boxfilled 200 200"
#1 "place 30 120;\First Segnent"”

#1 "segnment boxl| D"

#1 "flush" 'end first segnent

#1 "fill pink;color yellow

#1 "backcol or darkcyan"

#1 "place 150 150; circlefilled 100"
#1 "place 100 140;\ Second Segnent"
#1 "segnment circlel D'

#1 "flush" 'end second segnent

#1 "fill blue; color |ightgray”

#1 "backcol or darkred; pl ace 150 150"

#1 "ellipsefilled 250 200"

#1 "place 50 140;\Third Segnment, not flushed"

#1 "di scard" "discard these commands from nenory

wai t

[newDr awj

if currentlD=circlelDthen
#1 "redraw "; boxl D
current | D=boxI| D

el se
#1 "redraw ";circlelD
currentl D=circlel D

end if
wai t
[quit]

page5/6

Liberty BASIC Programmer's Encyc

cl ose #1:end

Segments and Flushing | Graphics and Memory | CLS | FLUSH | FLUSH SEGMENT NAME | SEGMENT
| SPRITES | DISCARD | REDRAW | DELSEGMENT | DEMO

page 6/6

http://www.tcpdf.org

	SegmentsAndFlushing

