Liberty BASIC Programmer's Encyc

Hardware Control with the Serial Port and Propeller.
Richard Baggett, December 24, 2008 r2consult.net

In this article, we will examine the issues related to using the serial port with Liberty Basic. We will automatically
scan for available ports, check those ports for our hardware, and then control that hardware.

This will work with any device that can appear as a Windows serial port. This includes real serial ports on the
motherboard, real ports on added hardware, USB to serial converters, even Ethernet serial devices (Terminal
servers) that allow the serial port to be anywhere in the world!

For our hardware, we will use the Parallax “Propeller” Demo board. It has a USB to serial converter built in, LEDs
that we can turn on and off from our Liberty Basic program, and even comes with the USB cable.

My Main reason for using the Propeller, is that, like Liberty Basic, it is deceptively powerful for it's simplicity! You
will be up and running in minutes, but the ultimate uses are limited only by your imagination. Liberty Basic users,
accustomed to Excellent support, and a dedicated community eager to help, will feel right at home as the Propeller
has this, also. The high-level SPIN language for the Propeller is somewhat Basic-like. Liberty Basic programmers
will quickly be doing amazing things with it!

Download the most recent Propeller Tool Software from Parallax.com. Hook up your Propeller Demo board to
power and USB. The SPIN code below may be copied and pasted into the Propeller Tool's editor. Then just press
f11 to compile and download the code to your Propeller Demo board.

Note the lack of End If and other expected block closures.. In SPIN, indenting blocks of code isn't just for looks, it's
the way the blocks are defined!

This is NOT Liberty Basic Code! It is SPIN for the Propeller Board

{{*************************************PrOpelIer Iofor LI bertyBaSlC *
kkkhkkhkkhkkkhkhkhkkhkhkhkkhkhkhkhkhkhkkhkikikkkikikkkkik*x

This is intended to run on the Denpo Board. It will also run on
a ProtoBoard with a Prop Plug. If you go the ProtoBoard route,
you wWill need to wire up your owmn LEDs if you want to see 'emg

o on and off fromthe LibertyBasic program

)

CON
_clknmode = xtall + pll 16x
_xinfreq = 5_000_000
VAR
Byte Buf f er [32] "My serial buf
fer
OoBJ
Serial : "FullDuplexSerial"
PUB Start |idx
Serial .start (31, 30,0, 9600) "Start the ser

page 1/7

http://r2consult.net/

Liberty BASIC Programmer's Encyc

ial port through the progranm ng adapter.

Diraf16..23] ~~
r epeat
| f GetWord

I f Strconp(@uffer, @Nane) == -
Serial . str(@espond)
Buffer.byte[0] :=0 "Clear the buf
fer, Propeller strings are zero term nated.
|f Buffer.Byte[O] == "I" " '"|"ed comman
d?
Repeat idx from16 to 23
| f Buffer.Byte[idx-15] == "1"
Quta[idx] ~~
El se
Quta[idx] ~
Buffer.Byte[0] := 0
Serial . rxflush

PRI GetWord |idx, tnp

idx :=0 "'This object attenpts to receive a retur
n termnated string, or a full buffer.
r epeat "'The string is put into Buffer, and the

function returns the length of the string.
tnp := Serial.rxcheck

case tnp
13: "Return encountered
Buf fer.byte[idx] := 0
"or.."z": " Characters only
Buf fer.Byte[idx++] = tnp
if idx > 32
tnmp = 13
while tnmp <> 13
Result := idx
DAT
MyNane Byte "Propeller?",0
Respond Byte "Present!",13,0 "Zero termnated strings

All our hardware setup is done! Now lets look at the Liberty Basic code!

First, We need a way to determine if a particular COM port is available. Most of the following routine is straight
from the Yahoo Liberty Basic group.

By using an API call to open the unknown port, we avoid triggering an error when the port doesn't exist. We just get
_INVALID_HANDLE_VALUE. Then it's a simple matter to return true or false for the existence of the port.

page 2 /7

Liberty BASIC Programmer's Encyc

Functi on CheckComcp) ' Checks for COM port avai
abl e. Thanks LB group nenbers!

| pFi |l eNane$ = "COM'; cp "Returns true if port can
be opened

dwCreationDi stribution = _OPEN_EXI STI NG
hTenpl ateFil e = _NULL
CalI DI #kernel 32, "CreateFileA", _ "This won't halt the progr
amif the port doesn't exist.
| pFi | eNanme$ as ptr,
dwDesi redAccess as ul ong,
dwShar eMode as ul ong, _
| pSecurityAttributes as ul ong,
dwCreationDi stribution as ul ong,
dwrl agsAndAt tri butes as ul ong,
hTenpl ateFi |l e as ul ong,
hFi | eHandl e as ul ong

Call D'l #kernel 32,"C oseHandl e", _ 'Close the port, so we don
't get an error |ater
hFi | eHandl e as ul ong, _
ret as |ong

| f hFileHandl e = | NVALI D HANDLE VALUE Then
CheckCom = 0

El se
CheckCom = 1

End If

End Functi on

Now that we've found an active port, how do we know if it's the one where our hardware is attached?

We design a protocol. Protocol is simply the process of presenting information in an agreed-upon way. Since we will
be using a serial port, we must have some way to find our place in the stream of data. For this, we will use a special
character. Since Liberty Basic automatically adds a after each print statement, (With notable exceptions, like the
trailing ;' .) we will use it as our 'end of data’' character.

Our protocol will work like this:

® No data is longer than 32 characters

e All data ends with a (Chr$(13))

® Unrecognized data will be ignored.

® Data packet 'Propeller?' will be understood as a query to our hardware. 'Are you there?'
® Hardware will return 'Present!' in response. (Just like attendance at school!)

® Data packet nine characters long beginning with 'l' is the command for the LEDs.

® We could just add more stuff forever....almost..

As you can see, we can make our protocol carry any kind of data, as long as our Liberty Basic program and our

page 3/7

Liberty BASIC Programmer's Encyc

hardware agree on what it represents. That's all there is to it.

One important serial port quirk is that the data printed to the port is not sent until the Liberty Basic program pauses
at a Wait statement, or an Input. Scan won't work. This is the reason behind the unorthodox use of Timer in this
function. We print Challenge$, and then immediately invoke the timer and hit a wait statement. This allows our data
to be sent, as well as providing time for the reply to arrive. When the timer fires, we disable the timer, and continue.
The length of the timer may be adjusted according to the speed of your computer, and any delays caused by your
serial connection.

So, Here it is:

Functi on DevCheck(cp, Chal | enge$, Expect $) ' Checks for device present
by sendi ng Chal | enge$, then

Port$ = "COM'; cp; ":"; Baud; ",n,8,1,ds0,cs0,rs" 'exam ning
the reply for Expect$

Com = 1024

Reply$ = ""

Qpen Port$ for random as #io

onconerror [ErrNotify]

#i o, chr$(13)

#i 0o, Chal |l enge$ " An unusual way to use the Tinmer.
It wll be avail able afterward.
Timer 80, [loWit] "Things sent to the COM port wll
not actually be sent out
Wi t ‘until we hit a wait statement! Th
en the wait nust be | ong
[1 oWait] "enough to allow a reply. If funny
t hi ngs happen, try nore tine.
Timer O
NunmByt es = | of (#i 0)
I f NunmBytes > 0 Then "W have a possible
reply..
Reply$ = input $(#io, |of(#io))
If trin$(Reply$) = Expect$ Then 'Is it the response
we expect ?
DevCheck =1 "Trint renoves the t
erm nating zero
El se "fromthe Propeller
string
DevCheck = 0
End I f
End If
Cl ose #io "W shoul d | eave the conputer the way

we found it.
End Functi on

Using a Timer inside a function like this is risky. If any other activity causes our program to branch or call a sub or

page 4 /7

Liberty BASIC Programmer's Encyc

function while we are paused at our Wait statement, our program will crash! If this were a program for general
release, It would be best to do our search before we open any windows at all.

In our demo program, we will simply cover the entire window (Including the title bar with it's pesky buttons.) with a
buttonless dialog. For simplicity's sake, our demo won't do anything special to ensure that the original window hasn't
been moved or resized, so just don't do it. Of course, if we make a version for non-programmers to use, we should
do a much better job.

So here's the rest of the demo.

LR I Sk I S S Rk Ik kS S Ik kS I Propeller |o*********************

"Denonstrating functions and techni ques for successful serial
‘port projects

LR Rk kS b bk Sk S Ik WndOW Set up**********************

NOVAI NW N

W ndowWw dth = 250 : W ndowHei ght = 150
UpperLeft X = I NT((Di spl ayW dt h- W ndoww dt h) / 2)
Upper LeftY = I NT((Di spl ayHei ght - W ndowHei ght)/ 2)

StaticText #main.st, "Using COM port nunber:", 10, 60, 150, 20

Text Box #mai n. CP, 165, 55, 55, 25

CheckBox #mai n. P16, "P16", LED, LED, 5, 5, 50, 16

CheckBox #mai n. P17, "P17", LED, LED, 65, 5, 50, 16

CheckBox #mai n. P18, "P18", LED, LED, 125, 5, 50, 16

CheckBox #mai n. P19, "P19", LED, LED, 185, 5, 50, 16

CheckBox #mai n. P20, "P20", LED, LED, 5, 30, 50, 16

CheckBox #mai n. P21, "P21", LED, LED, 65, 30, 50, 16

CheckBox #mai n. P22, "P22", LED, LED, 125, 30, 50, 16

CheckBox #mai n. P23, "P23", LED, LED, 185, 30, 50, 16

But t on #main.rsc "Re Scan COM ports", [Rescan],ul, 5, 85, 2
30, 24

LI Rk b S b b S b b b b S b b WndOW kkhkhkkhkkhkkhkhkkhkkhkkhkhkkihkhkikkhk*x

Qpen "1Owith the Propeller” for Wndow as #main
#main "trapclose [quit]”
#main "font nms_sans_serif 10"

LR R Ik Ik I S b Rk Sk kS F| nd Propeller kkhkhkhkhkhkkkxkkkkkhk*k

[Rescan]

W ndowWw dth = 255 : W ndowHei ght = 180

statictext #scn.staticl, "scanning for hardware,", 55, 30, 145, 16
statictext #scn.static2, "Please wait.", 80, 65, 85, 16

Open "scanning" for D al og_popup as #scn "We' Il cover the entir

e window with this
' popup to prevent any
events during the scan.

page 5/7

Liberty BASIC Programmer's Encyc

I f ComOpen = 1 Then
Close #io
ConOpen = 0

End If

G obal Baud, Port Nunber, ConOpen

Baud = 9600
For a =1 to 30
sonme crazy nunbers!
| f CheckCom(a) = 1 Then

"USB serial adapters can have

| f DevCheck(a, "Propeller?","Present!”) = 1 Then

#mai n. CP, str$(a)
Port$ = "COM'; a;
Com = 1024

Open Port$ for random as #io
onconerror [ErrNotify]

ConOpen = 1
End |f
End If
Next
I f ComOpen = 0 Then
#mai n. CP, "None"
End If
Cl ose#tscn
Wi t
[ErrNotify]

".n,8,1,ds0, csO, rs"

Noti ce "Unexpected error. Cont'; Str$(ConPort Nunber);" "; ConkError$

"Report error and cl ose
[quit]
Cl ose #main
I f ComOpen = 1 Then C ose #io
End

Sub LED handl e$
te that the click does not
I f ComOpen = 1 Then
tton is rel eased.
Send$ = "I"
For a = 16 to 23
the Propeller Deno Board
CoHandl $ = "#main. P"';
#CbHandl $, "val ue? V$"
If V$ = "set" Then

Send$ = Send$ + "1"

El se

Send$ = Send$ + "0"

OFF

Handl e t he checkboxes. No
happen until the nouse bu

"I for |ed.
The LED i/ o addresses on

We want 'checked' | eds ON

We want 'unchecked' | eds

page 6 /7

Liberty BASIC Programmer's Encyc

End |f
Next
#i o, Send$ "Just send the string, tha
t's all thereis to it!
End |f

End Sub

The only thing specific to hardware here isthe LED subroutine. It builds our 'I' command by testing all of the
checkboxes, adding a'1' for checked or a'0' for unchecked. Then it sendsit. Since this sub is called from the 'wait'
state by checking or clearing a checkbox, we immediately return to the ‘wait' state afterward and our data gets sent
right away

Have some fun turning the LEDs on and off. Then take a careful look at the hardware.

Did you natice all the other stuff on your Propeller Demo board? Y es, that isaVGA monitor port on there! And
actual mouse and keyboard ports! What about the microphone? And that video or antenna looking RCA socket..
It'll do video OR broadcast tv channels! Yes, that other doohickie is ajack for headphones! Even some 1/O left over
to use with that solderless breadboard!

Y es, we will have lots of fun with all of these in future articles! Be sure to check out the Propeller forum and
Propeller Object Exchange at Parallax.com. The Propeller data sheet has an excellent SPIN programming tutorial.
You will quickly see that there is nothing you can imagine that Liberty Basic, and the Propeller, can't do!

page 7/7

http://www.tcpdf.org

	SerialPortPropeller

