
Liberty BASIC Programmer's Encyc

Creating a Nonrectangular Window
Janet Terra
Creating a Nonrectangular Window | Demo 1: Drawing a Nonrectangular Window | Demo 2: Creating a
Nonrectangular Window from a Bitmap in Memory | Demo 3: Shaped Windows Without Graphicboxes
Creating an irregular shaped window is achieved with WinAPI calls to user32.dll and gdi32.dll. The first
step is to create a window without a caption. This can be achieved with the stylebits commands
_WS_POPUP in the addbits parameter and _WS_CAPTION in the removebits paramater, or simply using
the window_popup style. It is also advisable to keep the window in the forefront. Do this by using the
stylebits command _WS_EX_TOPMOST in the extended bits parameter. Remember that any GUI
window may be closed with Alt-F4.

For more detailed discussion of stylebits, see Stylebits - Windows.

Demo 1: Drawing a Nonrectangular Window
This first demo draws a circle, a rectangle, and some graphic text. The background is never added to the
window. Only the actual drawings, including the graphic text, become part of the window. First, open a
captionless window.

 Nomainwin

'Define the Window
 WindowWidth = 500
 WindowHeight = 500
 UpperLeftX = int((DisplayWidth-WindowWidth)/2)
 UpperLeftY = int((DisplayHeight-WindowHeight)/2)
 graphicbox #ShapeWindow.gb, 0, 0, 500, 500
 stylebits #ShapeWindow.gb, 0, _WS_BORDER, 0, 0

'Keep the Shaped Window in the Forefront
 stylebits #ShapeWindow, 0, 0, _WS_EX_TOPMOST, 0

 open "Shape Window" for window_popup as #ShapeWindow
 #ShapeWindow "trapclose [closeShapeWindow]"

Once the window is opened, handles and device controls to both the window and the graphicbox must be
obtained.

'Obtain the Handles and Device Controls
 hBw = hWnd(#ShapeWindow)

 page 1 / 9

http://lbpe.wikispaces.com/Stylebits+-+Windows

Liberty BASIC Programmer's Encyc

 hBgb = hWnd(#ShapeWindow.gb)
 hDCw = GetDC(hBw)
 hDCgb = GetDC(hBgb)

'The Function
 Function GetDC(hW)
 Calldll #user32, "GetDC", _
 hW as ulong, _
 GetDC as ulong
 End Function

Now you're ready to draw an image. In this first demo, the image will be drawn using API calls. These are
the steps in the [drawShape] gosub.

1: The Destination - Define a region to hold the finished window. Because this region will be built upon,
start with all 0's for x, y, width and height.

'Original values for hRgn is meaningless
 hRgn = RectRegion(0, 0, 0, 0)

'The Function
 Function RectRegion(ulx, uly, width, height)
 CallDLL #gdi32, "CreateRectRgn", _
 ulx as long, _
 uly as long, _
 width as long, _
 height as long, _
 RectRegion as ulong
 End Function

2: The Circle - Define the x, y, width and height values for the circle. Select a red brush, paint the
designated ellipse, delete the brush.

'hRgn1 = Elliptical Source Region
 hRgn1 = EllipticRegion(100, 50, 200, 250)
'Paint the Ellipse Red
 brushColor1 = 255 'Red Brush
 hBrush1 = createBrush(brushColor1)
 Call SelObject hDCw, hBrush1
 Call PaintRegion hDCw, hRgn1
 Call DelObject hBrush1

'The Functions and Subs
 Function RectRegion(ulx, uly, width, height)

 page 2 / 9

Liberty BASIC Programmer's Encyc

 CallDLL #gdi32, "CreateRectRgn", _
 ulx as long, _
 uly as long, _
 width as long, _
 height as long, _
 RectRegion as ulong
 End Function

 Function EllipticRegion(ulx, uly, width, height)
 CallDLL #gdi32, "CreateEllipticRgn", _
 ulx as long, _
 uly as long, _
 width as long, _
 height as long, _
 EllipticRegion as ulong
 End Function
 Function createBrush(brushColor)
 Calldll #gdi32, "CreateSolidBrush", _
 brushColor as long, _
 createBrush as ulong
 End Function

 Sub PaintRegion hDC, hRgn
 Calldll #gdi32, "PaintRgn", _
 hDC as ulong, _
 hRgn as ulong, _
 null as long
 End Sub

 Sub DelObject hObject
 Calldll #gdi32, "DeleteObject",_
 hObject as ulong,_
 null as long
 End Sub

 Sub SelObject hDC, hBrush
 Calldll #gdi32, "SelectObject", _
 hDC as ulong, _
 hBrush as ulong, _
 null as long
 End Sub

Use CombineRgn to add this painted region, hRgn1, to the destination region, hRgn.

'Set hRgn to the Combination of itself and hRgn1

 page 3 / 9

Liberty BASIC Programmer's Encyc

 newRgn = CombineRgn(hRgn, hRgn, hRgn1, _RGN_OR)

Now that region hRgn1 is a part of region hRgn, it is no longer needed. Delete that object to free memory.

'Delete hRgn1
 Call DelObject hRgn1

3: The Rectangle - Define the x, y, width and height values for the rectangle. Select a blue brush, paint the
designated rectangle, delete the brush.

'hRgn2 = Rectangular Source Region
 hRgn2 = RectRegion(150, 75, 300, 200)
'Paint the rectangle blue
 brushColor2 = 255 * 256^2 'Blue Brush
 hBrush2 = createBrush(brushColor2)
 Call SelObject hDCw, hBrush2
 Call PaintRegion hDCw, hRgn2
 Call DelObject hBrush2

Once again, use the API Call CombineRgn to add the pixels of the rectangle hRgn2 to the final destination
region hRgn.

'Set hRgn to the Combination of itself and hRgn2
 newRgn = CombineRgn(hRgn, hRgn, hRgn2, _RGN_OR)

The hRgn2 rectangle can now be safely deleted to free up space, as it's been added to the shaped window
region hRgn.

'Delete hRgn2
 Call DelObject hRgn2

4: The newly built region made up of regions hRgn1 and hRgn2 can now be set as the window.

'Set hRgn as the Window
 Call SetWindowRgn hBw, hRgn, 1

'The Sub
 Sub SetWindowRgn hWnd, hRgn, redrawMode
 Calldll #user32, "SetWindowRgn",_
 hWnd as ulong,_
 hRgn as ulong,_

 page 4 / 9

Liberty BASIC Programmer's Encyc

 redrawMode as long,_
 SetWindowRgn as long
 End Sub

The SetBkMode of #gdi32 can be called to achieve a transparent background for text. Text can then
become part of the window.

'Set background to Transparent
 Call SetBkMode hDCgb, 1

ReleaseDC is again called to release memory.

'Release memory
 Call ReleaseDC hBgb, hDCbg

Graphics text is accomplished with native Liberty BASIC code.

'Format Text
 #ShapeWindow.gb "font Courier_New 14 Bold"
 #ShapeWindow.gb "color Black; place 120 150"
 #ShapeWindow.gb "\Alt-F4 to Close"
 Wait

Run your program and a shaped window appears. Close the window with Alt-F4 or include a button for
closure. The window will stay on top of other windows, but it is possible for the window to lose focus. If
this happens, click on the window before pressing Alt-F4.

Click ShapedDemo1.bas for the entire program.

Demo 2: Creating a Nonrectangular Window from a Bitmap in
Memory

 page 5 / 9

http://lbpe.wikispaces.com/ShapedWindowDemo1

Liberty BASIC Programmer's Encyc

The second demo creates a nonrectangular window from a bitmap in memory. This demo draws the image,
but you could just as easily load the bitmap from file using Loadbmp. The stylebits _WS_BORDER is
used to remove the graphicsbox border.

'Define the Window
 WindowWidth = 250
 WindowHeight = 250
 UpperLeftX = int((DisplayWidth-WindowWidth)/2)
 UpperLeftY = int((DisplayHeight-WindowHeight)/2)

 stylebits #ShapeWindow.gb, 0, _WS_BORDER, 0, 0
 graphicbox #ShapeWindow.gb, 0, 0, 250, 250
 stylebits #ShapeWindow, 0, 0, _WS_EX_TOPMOST, 0

 open "Shape Window" for window_Popup as #ShapeWindow
 #ShapeWindow "trapclose [closeShapeWindow]"

'Obtain the Handles and Device Controls
 hBw = hWnd(#ShapeWindow)
 hBgb = hWnd(#ShapeWindow.gb)
 hDCw = GetDC(hBw)
 hDCgb = GetDC(hBgb)

'Draw the Shape
 #ShapeWindow.gb, "Down; Fill Black"
 Gosub [drawShape]

 Wait

Once again, after the shapes are drawn, the background color is set to transparent before writing the
graphic text. A region to hold the contents of the new window is defined.

'Set region to null
 hRgn = RectRegion(0, 0, 0, 0)

The shapes are drawn and text is written.

'Draw a Rectangle
 #ShapeWindow.gb "color darkblue; backcolor blue"
 #ShapeWindow.gb "place 50 200; boxfilled 225 225"

'Set background to Transparent
 Call SetBkMode hDCgb, 1

 page 6 / 9

Liberty BASIC Programmer's Encyc

'Release memory
 Call ReleaseDC hBgb, hDCbg

'Format and write text
 #ShapeWindow.gb "font Courier_New 16 86 Bold"
 #ShapeWindow.gb "color darkgreen; place 5 210"
 #ShapeWindow.gb "\Alt-F4 to Close"
 #ShapeWindow.gb "flush"

Each pixel must be now be read. The background color is black, as defined by

 #ShapeWindow.gb, "down; fill black"

so only NON-black pixels will become part of the new region, hRgn. Using a nested loop, the pixels can
be searched across and down.

'Read each pixel. Add each pixel to hRgn only if
'color is NOT black (0)
 For x = 0 to 250
 For y = 0 to 250
 If pixelColor(hDCgb, x, y) <> 0 Then
 hTempRgn = RectRegion(x, y, x+1, y+1)
 newRgn = CombineRgn(hRgn, hRgn, hTempRgn, 3)
 Call DelObject hTempRgn
 End If
 Next y
 Next x

Each 2x2 block becomes a region. If the upper left corner pixel is not black, then that newly created tiny
region (hTempRgn) becomes part of the final region (hRgn). If the upper left corner pixel is black, then
it's not.

A word about searching by pixel. Reading pixel by pixel is a slow process. If you run the demo included in the
files archive, be sure to allow 30 - 60 seconds before the background disappears. Larger bitmaps will take
considerably longer.

Once the newly formed region, hRgn, is complete, that region is set as the window.

'Set the region as the Window
 Call SetWindowRgn hBw, hRgn, 1

As a reminder, API created objects remain in memory until deleted. When closing the window, be sure to
release the memory with DelObject.

 page 7 / 9

Liberty BASIC Programmer's Encyc

 [closeShapeWindow]
 Call DelObject hBw
 Close #ShapeWindow
 End

Click ShapedDemo2.bas for the entire program.

Demo 3: Shaped Windows Without Graphicboxes
Neither graphics nor graphicboxes are required for shaped windows. An advantage to not using drawn
graphics is that there is no need to flush the drawings. Also, other GUI controls, such as buttons, listboxes,
etc. can be included within the GUI. Controls cannot be reliably placed in a graphicbox. Images are loaded
onto a regular window as statictext using the stylebits _SS_BITMAP and __SS_CENTERIMAGE. (See
Stylebits - Statictext.)This method does require a defined shape, though, such as CreateRectRgn or
CreateEllipticRgn. The window is then defined with SetWindowRgn. ShapedWindowDemo3.bas uses this
technique. The demo requires the boy.bmp image, or any other image of your choice.

boy.bmp

Details
Download
16 KB

Click ShapedDemo3.bas to view the entire program.

 page 8 / 9

http://lbpe.wikispaces.com/ShapedWindowDemo2
http://lbpe.wikispaces.com/Stylebits+-+Statictext
/file/view/boy.bmp/239981085/boy.bmp
/file/view/boy.bmp/239981085/boy.bmp
/file/detail/boy.bmp
/file/view/boy.bmp/239981085/boy.bmp
http://lbpe.wikispaces.com/ShapedWindowDemo3

Liberty BASIC Programmer's Encyc

Creating a Nonrectangular Window | Demo 1: Drawing a Nonrectangular Window | Demo 2: Creating a
Nonrectangular Window from a Bitmap in Memory | Demo 3: Shaped Windows Without Graphicboxes

Powered by TCPDF (www.tcpdf.org)

 page 9 / 9

http://www.tcpdf.org

	ShapedWindow

