Liberty BASIC Programmer's Encyc

Sprite Boundary Detection Tip

Author: Ben Jimenez

Boundary Detection

The tip in this article will help any beginning game programmer to easily design sprite boundaries. This is
especially useful when the background image holds irregular, or non-rectangular, boundaries.

Island boundaries defined as Collision detected against
collision sites background image

Many games have background boundaries of increasing complexities as the levels increase. This tip
benefits this type of game best. There are no complex coding skills needed. Once you learn this technique
you can begin designing your level backgrounds in five minutes! (Not including sprites). It’s easy to do
using your mouse and this small design program that I have put together for you.

The Detection Program

First, copy and paste the program below into your Liberty/Just BASIC code editor window.

Dim X(5000) '"this can be adjusted to fit your boundary needs
Di m Y(5000)

sz=5 'used to determ ne the cushion for detecting collisions
nomai NW n

W ndoww dt h=800

"these can be changed to match your background i nmage size
W ndowHei ght =600

Upper Lef t X=i nt ((Di spl ayW dt h- W ndoww dt h) / 2)

Upper Left Y=i nt ((Di spl ayHei ght - W ndowHei ght)/ 2)

menu #main,"File","New', [new, "Open", [open], " Save", [save], |,
"Test",[test],|,"Exit",[exit]

open "Boundary Designer" for graphics_nsb as #main

print #main, "Down;size ";sz;";color red";

page 1/7

Liberty BASIC Programmer's Encyc

print #main,"trapclose [exit]"

[mai n. | oop]
wai t

[new
filedial og "Open BMP Background","*. bnmp", bi t mapNane$
i f bitrmapNanme$<>"" then
| oadbnp "bg", bi t mapNane$
end if

#mai n, "drawbnp bg 0 O; fl ush”

cnt=1

redi m X(5000)

redi m Y(5000)

print #main,"color red"

print #main, "when nouseMve";

print #main, "when rightButtonUp";

print #main, "when | ef t ButtonMwve [check]";
print #main, "setfocus"

goto [main. | oop]

[check]
print #main,"set ";MuseX " ";MuseY
i f MouseX<>X(cnt-1) or MuseY<>Y(cnt-1) then
X(cnt) =MouseX
Y(cnt) =MouseY
cnt =cnt +1
end if

goto [main. | oop]

[save]
filedialog "Save level file", "*.lvl", fileNanme$
open fileNanme$ for output as #1
for x=1 to cnt-1
t X=X(x)
t Y=Y(X)
print #1,tX
print #1,tY
next x
cl ose #1
notice "File saved."

page 2 /7

Liberty BASIC Programmer's Encyc

goto [main. | oop]

[exit]
cl ose #main
end

[open]

print #main, "when nouseMve ";
print #main, "when | ef t ButtonMve";
filedialog "Select file","*.lvl",fileNanme$
if fileNane$="" then [nmain.| oop]
cnt=1
open fileNanme$ for input as #2
whil e eof (#2)<>-1

line input #2,tX

line input #2,tY

X(cnt) =t X

Y(cnt)=tY

cnt=cnt +1
wend
cl ose #2
print #main,"cls;color red"
for d=1 to cnt-1

print #main,"set ";X(d);" ";Y(d)
next d
print #main,"flush"

goto [main. | oop]

[test]
notice "Right click to stop testing”
print #main, "when | ef t ButtonhMve";
print #main, "when nouseMove [test.hit]";
print #main,"when rightButtonUp [end.test]";
goto [main. | oop]

[test.hit]
for t=1 to cnt-1
"I"ve made the dots bigger by adding and subracting sz val ue from each
poi nt .
"This makes it easier to hit the line
i f MouseX >=X(t)-sz and MouuseX <=X(t)+sz and MuseY >=Y(t)-sz and
MouseY<=Y(t)+sz then
print #main,"col or blue;set ";MuseX " ";MuseY
t=cnt-1

page 3/7

Liberty BASIC Programmer's Encyc

end if
next t
goto [main. | oop]

[end. test]
print #main, "when nouseMve";
print #main, "when rightButtonUp";
print #main, "when | eft ButtonMwve [check]";
print #main,"color red";
notice "Testing conplete”
goto [main. | oop]

Running the Program

Then, follow these simple steps:

#1 Load a background BMP into the program.

#2 Use your mouse to draw out the boundaries for the level.

#3 Save the level as an .1vl file (basic text file) to be used in your Game.
#4 Use a small programming routine in your game to check for collisions.

Loading the Background BMP Image

Run the program and load any BMP file onto the graphic screen. If you can, use a background graphic you
want to use in your game. Once you have your background loaded you can begin drawing your boundaries
on top of your background.

f

H

Choose New from ... Load the bitmap and ... will Display that
menu, the program background image

Drawing the Boundaries

Press and hold the left mouse button to draw on your background. Release the button to stop drawing. You
can begin drawing again anywhere on your picture. You will want to draw slowly so the program can
capture your mouse locations.

Defining the collision boundary ... Red areas depict collision

page 4 /7

Liberty BASIC Programmer's Encyc

boundaries

Testing the Boundaries
After your boundaries are all drawn, you can test them by selecting File-Test from the File menu.

Choose Test from menu, Move your mouse to test
boundaries

This will switch to test mode and you will no longer be able to draw. Use your mouse pointer to test the
background collision locations. When your mouse location collides with a collision boundary you should
see your mouse location turn blue. This indicates that you have collided with that boundary. Again you can
not move your mouse too fast or it will skip over the boundary and not get detected.

Saving the Boundaries

When you have completed drawing your boundary you can save itas a . | vl file. The . | vl file is justa
text file with the extension of . | vl . I use this extension to distinguish the file from other file types. You
can change this to another extension if you wish. The file contains all the positions on the graphic screen
that we designated as boundaries.

From the menu, Save the The saved .1vl file
boundaries

Once you have saved the file, you can use the file in your game with just a small amount of code.

Using the . | vl Information in Your Code
Reading the . | vl File

Using the boundary file in your game is really simple to do. First you must open and load the file into an
array. You can add this code to your game level load routine.

Di m X(5000) ‘5000 can be changed if you need | ess or nore

page5/7

Liberty BASIC Programmer's Encyc

D m Y(5000)

cnt=1 ‘setup up | oop counter
cush=5

Qpen “level .lvl” for input as #l vl

VWi | e eof (#1 vl)=0
line input #lvl,tX
line input #l vl,tY
X(cnt) =t X
Y(cnt)=tY
cnt =cnt +1

wend

close #l vl ‘close file

Checking for Collision With Each Sprite Movement

Once the . | vl file is loaded into the array you can check for collisions by adding the following code to
your main loop. I will use an example of a routine I have used in my game. The code was designed to be
used with one sprite on the game screen. The routine would have to be changed in order to check more
then one sprite. You may only want to check for the player's sprite if the other sprites have a pre
determined path.

[mai nl oop] 'check for crash
print #main ,"spritexy? shipl sx sy"

‘ This loop will quickly check if
nmy boundary position is inside the position of a sprite.
“You can switch this, if you rather reverse the check
“You can al so renove the "cush”" fromthe if then line if you w sh.

for t=0 to cnt-1
if X(t)-cush>= (sx+20) and X(t)+cush<= (sx+45) and Y(t)-cush>=(
sy+20) and Y(t)+cush<=(sy+70) then
print #main,"spritenovexy shipl 0 0";
t=cnt-1
hit=1
EXIT FOR
end if
next t

if hit=1 then
notice “You' ve hit sonething!”
end if

page 6 /7

Liberty BASIC Programmer's Encyc

Author Information and Demo Program

This is basically all there is to creating simple boundaries for your sprites. This is a simple technique that
can be used in your games until you become more experienced with Liberty/Just BASIC and find more
sophisticated methods of collision detection for boundaries.

You can find a game I created named Pirate Escape that uses this method on the LB Downloads file depot
under Games. The illustrations in this article are screenshots taken from the creation of that game. You can
contact me at ben_jimenez@yahoo.com with any questions or comments.

page 7/7

http://www.lbdownloads.com/files/
mailto:ben_jimenez@yahoo.com
http://www.tcpdf.org

	Sprite Boundary Detection Tip

