
Liberty BASIC Programmer's Encyc

Stringheight for Liberty BASIC

Stringwidth? is the Liberty BASIC command for obtaining the width in pixels of any given character
or chain of characters. Stringwidth? calculates this measurement based upon the current font in use.

 Open "The Stringwidth? Command" for Graphics as #g
 #g "Trapclose XbyTrap"
 char$ = "X"
 #g "Down; Place 20 50"
 #g "Font Times_New_Roman 14"
 #g "Stringwidth? char$ PixelWidth"
 #g "\The width of ";char$;" is ";PixelWidth;" pixels."
 #g "Font Courier_New 36"
 #g "Stringwidth? char$ PixelWidth"
 #g "\\The width of ";char$;" is ";PixelWidth;" pixels."
 #g "Flush"
Wait

Sub XbyTrap handle$
 Close #g
End
End Sub

Calculating Stringheight with Posxy

Unfortunately, there is no native Stringheight? function. A simple way to determine the height of a font is
to use the posxy xVar yVar command. The posxy function returns the position of the graphic pen.
Define the font, position the pen, draw text, get the new y position. The difference between the two y
positions is the height of the font.

 Open "Calculating Stringheight with Posxy" for Graphics as #g
 #g "Trapclose XbyTrap"
 Char$ = "X"
 #g "Down; Place 20 50"

' Select a font
 #g "Font Times_New_Roman 14"

' Get the pen position before drawing the text
 #g "Posxy x1Var y1Var"

' Draw the text
 #g "\";Char$

 page 1 / 15

Liberty BASIC Programmer's Encyc

' Get the pen position after drawing the text
 #g "Posxy x2Var y2Var"

' Subtract to determine Stringheight
 Stringheight = y2Var - y1Var

' Show the value of Stringheight
 #g "\The height of ";Char$;" is ";Stringheight;" pixels."

' Select another font
 #g "Font Courier_New 36"

' Create a linefeed
 #g "\"

' Get the pen position before drawing the text
 #g "Posxy x1Var y1Var"

' Draw the second text
 #g "\";Char$

' Get the pen position after drawing the text
 #g "Posxy x2Var y2Var"

' Subtract to determine Stringheight
 Stringheight = y2Var - y1Var

 #g "\The height of ";Char$;" is ";Stringheight;" pixels."

 #g "Flush"
Wait

Sub XbyTrap handle$
 Close #g
End
End Sub

This Stringheight method does not require the text to be drawn, neither does the text have to be visible.
Here is the same method using a 1 x 1 graphicbox that is set offscreen, thus invisible to the user.

 Graphicbox #main.g, -10, -10, 1, 1
 Statictext #main.t, "Font Dimensions", 20, 50, 250, 100
 Open "Calculating Stringheight with Posxy" for Window as #main
 #main "Trapclose XbyTrap"
 #main "Font Verdana 12 Bold"

 page 2 / 15

Liberty BASIC Programmer's Encyc

 Char$ = "X"
 #main.g "Down; Place 20 50"

' Select a font
 #main.g "Font Times_New_Roman 14"

' Calculate Stringwidth using the native Stringwidth? function
 #main.g "Stringwidth? Char$ Stringwidth"

' Get the pen position before drawing the text
 #main.g "Posxy x1Var y1Var"

' Draw the text
 #main.g, "\";Char$

' Get the pen position after drawing the text
 #main.g "Posxy x2Var y2Var"

' Subtract to determine Stringheight
 Stringheight = y2Var - y1Var

' Show the value of Stringwidth and Stringheight
 FontDimensions$ = "The dimensions of " ;Char$;" are " + _
 Str$(Stringwidth);" pixels wide and ";Str$(Stringheight) + _
 " pixels high."
 #main.t FontDimensions$

Wait

Sub XbyTrap handle$
 Close #main
End
End Sub

Disadvantages of Using Posxy to Calculate Stringheight

Posxy will not return the exact position of the drawn text. It only returns the number of vertical (y) pixels
advanced to for beginning the next line. The font space includes not just the font, but padding above,
below, to the left, and to the right, of the character itself. The y1Var is the lower position of the drawn
font, above the lower padding of the font space.

 Open "Calculating Stringheight with Posxy" for Graphics as #g
 #g "Trapclose XbyTrap"
 Char$ = "X"
 #g "Down; Place 20 50"

 page 3 / 15

Liberty BASIC Programmer's Encyc

 #g "Color Black; Backcolor Cyan"
 #g "Font Times_New_Roman 14"
 #g "Posxy x1Var y1Var"
 #g "\";Char$
 #g "Posxy x2Var y2Var"
 Stringheight = y2Var - y1Var

 #g "Color Red"
' Draw a red line at y1Var
 #g "Line 0 ";y1Var;" 100 ";y1Var

' Draw a red line at y2Var
 #g "Line 0 ";y2Var;" 100 ";y2Var
 #g "Flush"
Wait

Sub XbyTrap handle$
 Close #g
End
End Sub

Stringheight Wrapped in a Function

Still, if all that is needed is the vertical height of the font space, a simple custom function using an
offscreen graphicbox is quick and easy.

 Nomainwin
 WindowWidth = 800
 WindowHeight = 600
 UpperLeftX = Int((DisplayWidth - WindowWidth) /2)
 UpperLeftY = Int((DisplayHeight - WindowHeight) /2)
 Graphicbox #main.h, -10, -10, 1, 1 ' Hidden graphicbox
 Graphicbox #main.g, 0, 0, 800, 600 ' Visible graphicbox
 Open "Calculating Stringheight with Posxy" for Window as #main
 #main "Trapclose XbyTrap"
 CurrentFont$ = "Verdana 32 Bold"
 #main.g "Font ";CurrentFont$
 Stringheight = Stringheight(CurrentFont$)
 #main.g "Down; Place 20 50"
 For i = 1 to 10
 #main.g "\Line ";i
 Next i
 #main.g "Color Red"
 yPos = 55
 For i = 1 to 10

 page 4 / 15

Liberty BASIC Programmer's Encyc

 For x = 20 to 250 Step 5
 #main.g "Place ";x;" ";yPos
 #main.g "Circle 4"
 Next x
 yPos = yPos + Stringheight
 Next i
 #main.g, "Flush"

Wait

Sub XbyTrap handle$
 Close #main
End
End Sub

Function Stringheight(CurrentFont$)
 #main.h "Cls"
 #main.h "Font ";CurrentFont$
 #main.h "Place 20 500"
 #main.h "Posxy x1Var y1Var"
 #main.h "\X"
 #main.h "Posxy x2Var y2Var"
 Stringheight = y2Var - y1Var
End Function

The Font Dimensions

It is possible to calculate all the font dimensions of the font space as well as the dimensions of the
character itself by using a simple gdi32 call. The "GetPixel" API call returns the pixel color at a given
x,y location. Set the backcolor to black, then search for 0, the numerical value of black, to find the
boundaries of the drawn character.

 WindowWidth = 800
 WindowHeight = 600
 Graphicbox #main.g, 0, 0, 800, 600
 Open "StringHeight for Liberty BASIC" for Window as #main
 #main "Trapclose XbyTrap"
 #main.g "Down; Color Blue; Backcolor Black"

' Assign a font
 #main.g "Font Times_New_Roman 24"

' Draw a character
 #main.g "Place 100 100"
 #main.g "\X"

 page 5 / 15

Liberty BASIC Programmer's Encyc

 #main.g "Flush"
Wait

Sub XbyTrap handle$
 Close #main
End
End Sub

The GetPixel Call

Include a custom function to return the pixel value in your code. Since the "GetPixel" call requires the
handle of the device context, the "GetDC" custom function should also be included in your code. Before
ending your program, release the retrieved device contexts with the "ReleaseDC" sub.

' Get the device context
 hDC = hDC(hWnd(#main.g))

Function PixelLong(hDC, xVar, yVar)
 Open "gdi32"for DLL as #gdi
 CallDLL #gdi, "GetPixel",_
 hDC as Ulong,_
 xVar as Long,_
 yVar as Long,_
 PixelLong as Long
 Close #gdi
End Function

Function hDC(handle)
 CallDLL #user32, "GetDC",_
 handle as Ulong,_
 hDC as Ulong
End Function

Sub ReleaseDC hW, hDC
 CallDLL#user32,"ReleaseDC", _
 hW as Ulong, _
 hDC as Ulong, _
 result as Long
End Sub

Find the Boundaries of the Font Space

 page 6 / 15

Liberty BASIC Programmer's Encyc

The font space contains more than just the font. There is usually a padding above and below the font, as
well as to the left and right of the font. To find the font space boundaries, start at a location outside of the
font and work toward the font, stopping when a black pixel is found.

Finding UpperY of the Font Space

Beginning at 0, work down until a black pixel is found. The x value of 101 is used because the font was
drawn at 100, 100.

 For y = 1 to 600
 If PixelLong(hDC, 101, y) = 0 Then
 UpperY = y
 Exit For
 End If
 Next y

Finding LowerY of the Font Space

Start at the lowest possible and work up until a black pixel is found.

 For y = 600 to 1 Step -1
 If PixelLong(hDC, 101, y) = 0 then
 LowerY = y
 Exit For
 End If
 Next y

Finding the LeftX of the Font Space

LeftX is the first black pixel encountered beginning at 0 and working to the right (x increases).

 For x = 0 to 800
 If PixelLong(hDC, x, 100) = 0 Then
 LeftX = x
 Exit For
 End If
 Next x

Finding the RightX of the Font Space

RightX is the first black pixel encountered moving from the farthest right of the window to the left (x

 page 7 / 15

Liberty BASIC Programmer's Encyc

decreases).

 For x = 800 to 0 Step -1
 If PixelLong(hDC, x, 100) = 0 Then
 RightX = x
 Exit For
 End If
 Next x

Boxing the Font Space

To show that the variables are accurate, draw a box around the font space beginning with LeftX, UpperY
and extending to RightX, LowerY.

 #main.g "Color Red; Backcolor White"
 #main.g "Place ";LeftX;" ";UpperY
 #main.g "Box ";RightX + 1;" ";LowerY + 1

Calculating Stringheight

Stringheight is RightX - LeftX.

 Stringheight = LowerY - UpperY
 #main.g "Place 100 "; 100 + Stringheight * 2
 #main.g "\Stringheight = ";Stringheight

Release the Device Context

Finally, release the device context from memory.

 Call ReleaseDC hWnd(#main.g), hDC

Putting It All Together

Here is the code in its entirety.

 WindowWidth = 800
 WindowHeight = 600
 Graphicbox #main.g, 0, 0, 800, 600
 Open "StringHeight for Liberty BASIC" for Window as #main
 #main "Trapclose XbyTrap"

 page 8 / 15

Liberty BASIC Programmer's Encyc

 #main.g "Down; Color Blue; Backcolor Black"

' Assign a font
 #main.g "Font Times_New_Roman 24"

' Draw a character
 #main.g "Place 100 100"
 #main.g "\X"
 #main.g "Flush"

' Get the device context
 hDC = hDC(hWnd(#main.g))

' Find the UpperY boundary of the font space
 For y = 0 to 600
 If PixelLong(hDC, 101, y) = 0 Then
 UpperY = y
 Exit For
 End If
 Next y

' Find the LowerY boundary of the font space
 For y = 600 to 0 Step -1
 If PixelLong(hDC, 101, y) = 0 then
 LowerY = y
 Exit For
 End If
 Next y

' Find the LeftX boundary of the font space
 For x = 0 to 800
 If PixelLong(hDC, x, 100) = 0 Then
 LeftX = x
 Exit For
 End If
 Next x

' Find the RightX boundary of the font space
 For x = 800 to 0 Step -1
 If PixelLong(hDC, x, 100) = 0 Then
 RightX = x
 Exit For
 End If
 Next x

' Outline the font

 page 9 / 15

Liberty BASIC Programmer's Encyc

 #main.g "Color Red; Backcolor White"
 #main.g "Place ";LeftX;" ";UpperY
 #main.g "Box ";RightX + 1;" ";LowerY + 1

' Calculate Stringheight
 Stringheight = LowerY - UpperY
 #main.g "Place 100 "; 100 + Stringheight * 2
 #main.g "\Stringheight = ";Stringheight

' Release the device context
 Call ReleaseDC hWnd(#main.g), hDC
Wait

Sub XbyTrap handle$
 Close #main
End
End Sub

Function PixelLong(hDC, xVar, yVar)
 Open "gdi32"for DLL as #gdi
 CallDLL #gdi, "GetPixel",_
 hDC as Ulong,_
 xVar as Long,_
 yVar as Long,_
 PixelLong as Long
 Close #gdi
End Function

Function hDC(handle)
 CallDLL #user32, "GetDC",_
 handle as Ulong,_
 hDC as Ulong
End Function

Sub ReleaseDC hW, hDC
 CallDLL#user32,"ReleaseDC", _
 hW as Ulong, _
 hDC as Ulong, _
 result as Long
End Sub

Actual Font Height

If the actual font height, not including the over and under padding, is required, additional searching of
black pixels is required. In this instance, the area inside the font space is searched looking for black and
non-black pixels. The following demo shows how the width and height of any character of any font can be

 page 10 / 15

Liberty BASIC Programmer's Encyc

determined using the "GetPixel" API call.

 Global CurrentFontSpec$, Char$
 Global x1Left, x1Right, y1Upper, y1Lower
 Global x2Left, x2Right, y2Upper, y2Lower
 Global FontPixelWidth1, FontPixelHeight1
 Global FontPixelWidth2, FontPixelHeight2

 Nomainwin
 WindowWidth = 800
 WindowHeight = 600
 UpperLeftX = Int((DisplayWidth - WindowWidth) /2)
 UpperLeftY = Int((DisplayHeight - WindowHeight) /2)
 Graphicbox #main.g, 100, 0, 700, 570
 Stylebits #main.f1, _BS_MULTILINE, 0, 0, 0
 Button #main.f1, "Select Font", FontSelect, UL, 5, 50, 90, 50
 Stylebits #main.f2, _BS_MULTILINE, 0, 0, 0
 Button #main.f2 "Font Character"
, FontCharacter, UL, 5, 120, 90, 50
 Stylebits #main.f3, _BS_MULTILINE, 0, 0, 0
 Button #main.f3 "Font Dimensions"
, FontDimensions, UL, 5, 190, 90, 50
 Open "Calculating Graphic Text Dimensions" for Window as #main
 Print #main, "Trapclose XbyTrap"
 CurrentFontSpec$ = "Times_New_Roman 12 Bold"
 Char$ = "X"
 Print #main, " Font ";CurrentFontSpec$
 Print #main.g, "Font ";CurrentFontSpec$
 Print #main.g, "Down; Fill White"
 Print #main.g, "Color Black; Flush"
Wait

Sub XbyTrap handle$
 Close #main
End
End Sub

Sub FontSelect handle$
 FontDialog CurrentFontSpec$, NewFontSpec$
 If NewFontSpec$ <> "" Then
 CurrentFontSpec$ = NewFontSpec$
 End If
End Sub

 page 11 / 15

Liberty BASIC Programmer's Encyc

Sub FontCharacter handle$
 p$ = "Character to be measured";Chr$(13)
 p$ = p$;"(Current = ";Char$;")"
 Prompt p$;c$
 If c$ <> "" Then
 Char$ = c$
 End If
End Sub

Sub FontDimensions handle$
 #main.g "Fill White; Cls; Fill White"
 #main.g "Backcolor Black; Color Blue"
 #main.g "Font ";CurrentFontSpec$
 #main.g "Stringwidth? Char$ FontStringWidth"
 h1 = Val(Word$(CurrentFontSpec$, 2))
 h2 = Val(Word$(CurrentFontSpec$, 3))
 yPos = Max(h1, h2) * 2
 #main.g "Place 20 ";yPos
 #main.g "\";Char$
 hDC = hDC(hWnd(#main.g))
 For y = 0 to yPos
 If PixelLong(hDC, 20, y) = 0 Then
 y1Upper = y
 Exit For
 End If
 Next y
 For y = yPos * 2 to 0 Step -1
 If PixelLong(hDC, 20, y) = 0 Then
 y1Lower = y
 Exit For
 End If
 Next y
 FontPixelHeight1 = y1Lower - y1Upper
 For x = 10 to 800
 If PixelLong(hDC, x, y1Upper) = 0 Then
 x1Left = x
 Exit For
 End If
 Next x
 For x = yPos * 2 to 10 Step -1
 If PixelLong(hDC, x, y1Upper) = 0 Then
 x1Right = x
 Exit For
 End If
 Next x
 FontPixelWidth1 = x1Right - x1Left

 page 12 / 15

Liberty BASIC Programmer's Encyc

 For y = y1Upper to y1Lower
 pixel = 0
 For x = x1Left + 1 to x1Right
 If PixelLong(hDC, x, y) <> 0 Then
 pixel = 1
 Exit For
 End If
 Next x
 If pixel <> 0 Then
 y2Upper = y
 Exit For
 End If
 Next y
 For y = y1Lower to y1Upper Step -1
 pixel = 0
 For x = x1Left to x1Right
 If PixelLong(hDC, x, y) <> 0 Then
 pixel = 1
 Exit For
 End If
 Next x
 If pixel <> 0 Then
 y2Lower = y
 Exit For
 End If
 Next y
 FontPixelHeight2 = y2Lower - y2Upper
 For x = x1Left to x1Right
 pixel = 0
 For y = y2Upper to y2Lower
 If PixelLong(hDC, x, y) <> 0 Then
 pixel = 1
 Exit For
 End If
 Next y
 If pixel <> 0 Then
 x2Left = x
 Exit For
 End If
 Next x
 For x = x1Right to x2Left Step -1
 pixel = 0
 For y = y2Upper to y2Lower
 If PixelLong(hDC, x, y) <> 0 Then
 pixel = 1
 Exit For

 page 13 / 15

Liberty BASIC Programmer's Encyc

 End If
 Next y
 If pixel <> 0 Then
 x2Right = x
 Exit For
 End If
 Next x
 FontPixelWidth2 = x2Right - x2Left
 #main.g "Backcolor White"
 #main.g "Color Yellow"
 #main.g "Line ";x1Left;" ";yPos;" ";x1Right;" ";yPos
 #main.g "Color Red"
 #main.g "Place ";x1Left - 1;" ";y1Upper - 1
 #main.g "Box ";x1Right + 1;" ";y1Lower + 1
 #main.g "Place ";x1Left;" ";y1Lower + 20
 #main.g "Font Times_New_Roman 12 Bold"
 #main.g "\Total Width = ";FontPixelWidth1;" pixels"
 #main.g "\Total Height = ";FontPixelHeight1;" pixels"
 #main.g "Color Cyan"
 #main.g "Place ";x2Left;" ";y2Upper
 #main.g "Box ";x2Right + 1;" ";y2Lower + 1
 #main.g "Place ";x1Left;" ";y1Lower + 70
 #main.g "Font Times_New_Roman 12 Bold"
 #main.g "\Font Width = ";FontPixelWidth2;" pixels"
 #main.g "\Font Height = ";FontPixelHeight2;" pixels"
 #main.g "Color Black"
 #main.g "\\Stringwidth? = ";FontStringWidth;" pixels"
 #main.g "Flush"
 Call ReleaseDC hWnd(#main.g), hDC
End Sub

Function PixelLong(hDC, xVar, yVar)
 Open "gdi32"for DLL as #gdi
 CallDLL #gdi, "GetPixel",_
 hDC as Ulong,_
 xVar as Long,_
 yVar as Long,_
 PixelLong as Long
 Close #gdi
End Function

Function hDC(handle)
 CallDLL #user32, "GetDC",_
 handle as Ulong,_
 hDC as Ulong
End Function

 page 14 / 15

Liberty BASIC Programmer's Encyc

Sub ReleaseDC hW, hDC
 CallDLL#user32,"ReleaseDC", _
 hW as Ulong, _
 hDC as Ulong, _
 result as Long
End Sub

Disadvantages of Using GetPixel to Determine String Dimensions

There are at least two disadvantages to this method. The first is that the character has to actually be drawn
using graphic text. And, the entire font space must stay visible throughout the calculations. The second
disadvantage is the speed, or lack thereof, in which each pixel is identified for color. The slowness may
prevent the routine from being used 'on the fly' throughout the program. Still, the routine may be of some
benefit for those programmers in need of more specific character dimensions.

Posxy or GetPixel: Which is Right for You?

Choose posxy when the height of the font space is all that's required. If you absolutely need to know the
specific dimensions of the character, excluding the padding, then GetPixel is your best option.

Powered by TCPDF (www.tcpdf.org)

 page 15 / 15

http://www.tcpdf.org

	StringheightWithGetPixel

