
Liberty BASIC Programmer's Encyc

The PUSHLIKE Stylebits

Stylebits allows checkboxes and radiobuttons to appear to be pushed rather than selected. Stefan Pendl,
always generous with explanations and code, offered button information in response to a query posed at
the Liberty BASIC yahoo! message group. (See the original message #27196.)

For a better understanding, the following controls are all defined as buttons by Windows:

1. button
2. groupbox
3. bmpbutton
4. checkbox
5. radiobutton

You can use the style _BS_PUSHLIKE to change the radiobutton and checkbox into a pushbutton, that
will keep its state.

These buttons are called toggle buttons, they are raised when inactive and sunken when active. To find out
more about toggle buttons, read the information at the MSDN Library.

Stefan's Demo

Stefan was kind enough to grant permission for his yahoo! code to be republished here. Using the
_BS_PUSHLIKE stylebits, a checkbox and two grouped radiobuttons are altered from their usual forms to
button forms. The change in style does not alter the set and unset properties.

 nomainwin

 groupbox #main.gb, "Toggle Radiobuttons", 10, 10, 120, 100
 stylebits #main.bt, _BS_PUSHLIKE, 0, 0, 0
 radiobutton #main.bt, "Toggle"
, [pushed], [pushed], 20, 30, 100, 30
 stylebits #main.bt1, _BS_PUSHLIKE, 0, 0, 0
 radiobutton #main.bt1, "Toggle1"
, [pushed], [pushed], 20, 70, 100, 30

 stylebits #main.bt2, _BS_PUSHLIKE, 0, 0, 0
 checkbox #main.bt2, "Toggle Checkbox"
, [pushed], [pushed], 20, 120, 100, 30

 open "Toggle demo" for window as #main
 #main "trapclose [quit]"

 page 1 / 9

http://groups.yahoo.com/group/libertybasic/
http://groups.yahoo.com/group/libertybasic/message/27196
http://msdn.microsoft.com/en-us/library/bb775951(VS.85).aspx

Liberty BASIC Programmer's Encyc

 wait

[pushed]
 wait

[quit]
 close #main
 end

Stylebits, Graphics and the API call, "SendMessageA"

Creating graphic buttons using _BS_BITMAP and CallDLL #user32, "SendMessageA" has been discussed
by Alyce Watson in API Corner - Easy BMP Buttons (LB Newsletter #123) and also in Stylebits - Buttons.
In these next two demos, the graphics are drawn and captured within the program. You could easily
substitute your own code for loading the bitmaps from file.

'Demonstration of using Stylebits to turn checkboxes into
'push buttons
'Based on code provided by Stefan Pendl
'Yahoo! Message ##27196

 Nomainwin

 WindowWidth = 207
 WindowHeight = 297
 UpperLeftX = Int((DisplayWidth - WindowWidth)/2)
 UpperLeftY = Int((DisplayHeight - WindowHeight)/2)

'Groupbox defines Checkbox Area
 Groupbox #main.gp, "Color", 10, 10, 120, 100

'Draw checkboxes that will look like push buttons
'Stylebits _BS_PUSHLIKE causes checkbox to resemble push button
'Stylebits _BS_BITMAP allows a bitmap to be drawn on button
'Be sure to set width and height to bitmap dimensions
 Stylebits #main.bt1, _BS_PUS
HLIKE or _BS_BITMAP, 0, _WS_EX_DLGMODALFRAME, 0
 Checkbox #main.bt1, "", checked, unchecked, 20, 30, 40, 30
 Stylebits #main.bt2, _BS_PUS
HLIKE or _BS_BITMAP, 0, _WS_EX_DLGMODALFRAME, 0
 Checkbox #main.bt2, "", checked, unchecked, 20, 70, 40, 30
 Stylebits #main.bt3, _BS_PUS
HLIKE or _BS_BITMAP, 0, _WS_EX_DLGMODALFRAME, 0

 page 2 / 9

http://babek.info/libertybasicfiles/lbnews/nl123/api.htm
/Stylebits%20-%20Buttons

Liberty BASIC Programmer's Encyc

 Checkbox #main.bt3, "", checked, unchecked, 80, 30, 40, 30
 Stylebits #main.bt4, _BS_PUS
HLIKE or _BS_BITMAP, 0, _WS_EX_DLGMODALFRAME, 0
 Checkbox #main.bt4, "", checked, unchecked, 80, 70, 40, 30

'For this demo, a graphicbox is needed to draw and capture bitmaps
 Graphicbox #main.gb, 0, 150, 200, 120
 Open "Stylebits and Checkboxes" for Window as #main
 #main "Trapclose endDemo"

'Obtain handle of the main window
 hMain = hWnd(#main)
'Obtain handles of the 4 checkboxes
 hButton1 = hWnd(#main.bt1)
 hButton2 = hWnd(#main.bt2)
 hButton3 = hWnd(#main.bt3)
 hButton4 = hWnd(#main.bt4)

'===
'To load bitmaps from disk, use
 'Loadbmp "buttonPic1", "buttonPic1.bmp"
 'Loadbmp "buttonPic2", "buttonPic2.bmp"
 'etc.
'===
'For this demo, the bitmaps will be drawn and captured
 #main.gb "Down; Fill Black; Size 2"
 #main.gb "Color Lightgray; Backcolor DarkRed"
 #main.gb "Place 2 2; Boxfilled 38 28"
 #main.gb "Getbmp buttonPic1 0 0 40 30"
 #main.gb "Backcolor Darkblue"
 #main.gb "Place 2 2; Boxfilled 38 28"
 #main.gb "Getbmp buttonPic2 0 0 40 30"
 #main.gb "Backcolor Yellow"
 #main.gb "Place 2 2; Boxfilled 38 28"
 #main.gb "Getbmp buttonPic3 0 0 40 30"
 #main.gb "Backcolor Darkgreen"
 #main.gb "Place 2 2; Boxfilled 38 28"
 #main.gb "Getbmp buttonPic4 0 0 40 30"
'===

'Get the handle of the bitmaps
 hPic1 = hBmp("buttonPic1")
 hPic2 = hBmp("buttonPic2")
 hPic3 = hBmp("buttonPic3")
 hPic4 = hBmp("buttonPic4")

 page 3 / 9

Liberty BASIC Programmer's Encyc

'Paint the bitmaps on the buttons
 For i = 1 to 4
 Select Case i
 Case 1
 hBtn = hButton1
 hPic = hPic1
 Case 2
 hBtn = hButton2
 hPic = hPic2
 Case 3
 hBtn = hButton3
 hPic = hPic3
 Case 4
 hBtn = hButton4
 hPic = hPic4
 End Select
 CallDll #user32, "SendMessageA", _
 hBtn as uLong, _
 _BM_SETIMAGE as Long, _
 _IMAGE_BITMAP as Long, _
 hPic as uLong, _
 result as Long
 Next i

'Erase button drawings in graphicbox
 #main.gb "Cls; Fill Black"

'Wait for user input
 Wait

'Find which checkbox checked
'Fill quadrant with designated color
 Sub checked handle$
 clr = Val(Right$(handle$, 1))
 Select Case clr
 Case 1
 #main.gb "Color Darkred; Backcolor Darkred"
 x = 1
 y = 1
 Case 2
 #main.gb "Color Darkblue; Backcolor Darkblue"
 x = 1
 y = 61
 Case 3
 #main.gb "Color Yellow; Backcolor Yellow"
 x = 101

 page 4 / 9

Liberty BASIC Programmer's Encyc

 y = 1
 Case 4
 #main.gb "Color Darkgreen; Backcolor Darkgreen"
 x = 101
 y = 61
 End Select
 #main.gb "Place ";x;" ";y
 #main.gb "Boxfilled ";x + 99;" ";y + 59
 End Sub

'Find which checkbox unchecked
'Fill appropriate quadrant with black
 Sub unchecked handle$
 clr = Val(Right$(handle$, 1))
 #main.gb "Color Black; Backcolor Black"
 Select Case clr
 Case 1
 x = 1
 y = 1
 Case 2
 x = 1
 y = 61
 Case 3
 x = 101
 y = 1
 Case 4
 x = 101
 y = 61
 End Select
 #main.gb "Place ";x;" ";y
 #main.gb "Boxfilled ";x + 99;" ";y + 59
 End Sub

'End the program
 Sub endDemo handle$
'Unload bitmaps to free memory
 For i = 1 to 4
 Unloadbmp "buttonPic";i
 Next i
 Close #main
 End
 End Sub

Button Event Handlers: Branch Label or Sub?

 page 5 / 9

Liberty BASIC Programmer's Encyc

As is the case with most event handlers, the button event handler can be either a branch label or a sub. The
advantage of using a sub with grouped checkboxes or radiobuttons is that the control handle is
automatically passed into the sub. With careful parsing of the control handle extension and the use of
Select Case, code becomes much more efficient than is possible with branch labels. The following demo
contains just four radiobuttons within a group, but could easily serve a group of 100 radiobuttons or more.

'Demonstration of using Stylebits to turn radiobuttons into
'push buttons
'Based on code provided by Stefan Pendl
'Yahoo! Message ##27196

 Nomainwin

 WindowWidth = 207
 WindowHeight = 297
 UpperLeftX = Int((DisplayWidth - WindowWidth)/2)
 UpperLeftY = Int((DisplayHeight - WindowHeight)/2)

'Groupbox defines Radiobuttons Area
 Groupbox #main.gp, "Color", 10, 10, 120, 100

'Draw radiobuttons that will look like push buttons
'Stylebits _BS_PUSHLIKE causes radiobutton to resemble push button
'Stylebits _BS_BITMAP allows a bitmap to be drawn on button
'Be sure to set width and height to bitmap dimensions
 Stylebits #main.bt1, _BS_PUS
HLIKE or _BS_BITMAP, 0, _WS_EX_DLGMODALFRAME, 0
 Radiobutton #main.bt1, "", selected, unselected, 20, 30, 40, 30
 Stylebits #main.bt2, _BS_PUS
HLIKE or _BS_BITMAP, 0, _WS_EX_DLGMODALFRAME, 0
 Radiobutton #main.bt2, "", selected, unselected, 20, 70, 40, 30
 Stylebits #main.bt3, _BS_PUS
HLIKE or _BS_BITMAP, 0, _WS_EX_DLGMODALFRAME, 0
 Radiobutton #main.bt3, "", selected, unselected, 80, 30, 40, 30
 Stylebits #main.bt4, _BS_PUS
HLIKE or _BS_BITMAP, 0, _WS_EX_DLGMODALFRAME, 0
 Radiobutton #main.bt4, "", selected, unselected, 80, 70, 40, 30

'For this demo, a graphicbox is needed to draw and capture bitmaps
 Graphicbox #main.gb, 0, 150, 200, 120
 Open "Stylebits and Radiobuttons" for Window as #main
 #main "Trapclose endDemo"

'Obtain handle of the main window
 hMain = hWnd(#main)

 page 6 / 9

Liberty BASIC Programmer's Encyc

'Obtain handles of the 4 radiobuttons
 hButton1 = hWnd(#main.bt1)
 hButton2 = hWnd(#main.bt2)
 hButton3 = hWnd(#main.bt3)
 hButton4 = hWnd(#main.bt4)

'===
'To load bitmaps from disk, use
 'Loadbmp "buttonPic1", "buttonPic1.bmp"
 'Loadbmp "buttonPic2", "buttonPic2.bmp"
 'etc.
'===
'For this demo, the bitmaps will be drawn and captured
 #main.gb "Down; Fill Black; Size 2"
 #main.gb "Color Lightgray; Backcolor DarkRed"
 #main.gb "Place 2 2; Boxfilled 38 28"
 #main.gb "Getbmp buttonPic1 0 0 40 30"
 #main.gb "Backcolor Darkblue"
 #main.gb "Place 2 2; Boxfilled 38 28"
 #main.gb "Getbmp buttonPic2 0 0 40 30"
 #main.gb "Backcolor Yellow"
 #main.gb "Place 2 2; Boxfilled 38 28"
 #main.gb "Getbmp buttonPic3 0 0 40 30"
 #main.gb "Backcolor Darkgreen"
 #main.gb "Place 2 2; Boxfilled 38 28"
 #main.gb "Getbmp buttonPic4 0 0 40 30"
 #main.gb "Backcolor Black; Fill Black"
'===

'Get the handle of the bitmaps
 hPic1 = hBmp("buttonPic1")
 hPic2 = hBmp("buttonPic2")
 hPic3 = hBmp("buttonPic3")
 hPic4 = hBmp("buttonPic4")

'Paint the bitmaps on the radiobuttons
 For i = 1 to 4
 Select Case i
 Case 1
 hBtn = hButton1
 hPic = hPic1
 Case 2
 hBtn = hButton2
 hPic = hPic2
 Case 3
 hBtn = hButton3

 page 7 / 9

Liberty BASIC Programmer's Encyc

 hPic = hPic3
 Case 4
 hBtn = hButton4
 hPic = hPic4
 End Select
 CallDll #user32, "SendMessageA", _
 hBtn as uLong, _
 _BM_SETIMAGE as Long, _
 _IMAGE_BITMAP as Long, _
 hPic as uLong, _
 result as Long
 Next i

'Erase button drawings in graphicbox
 #main.gb "Cls; Fill Black"

'Wait for user input
 Wait

'Find which radiobutton checked
'Fill quadrant with designated color
 Sub selected handle$
 clr = Val(Right$(handle$, 1))
 #main.gb "Cls; Fill Black"
 Select Case clr
 Case 1
 #main.gb "Color Darkred; Backcolor Darkred"
 x = 1
 y = 1
 Case 2
 #main.gb "Color Darkblue; Backcolor Darkblue"
 x = 1
 y = 61
 Case 3
 #main.gb "Color Yellow; Backcolor Yellow"
 x = 101
 y = 1
 Case 4
 #main.gb "Color Darkgreen; Backcolor Darkgreen"
 x = 101
 y = 61
 End Select
 #main.gb "Place ";x;" ";y
 #main.gb "Boxfilled ";x + 99;" ";y + 59
 End Sub

 page 8 / 9

Liberty BASIC Programmer's Encyc

'As is the case with any radiobutton, an
'Unset event handler needs to be defined
'but is never actually executed
 Sub unselected handle$
 clr = Val(Right$(handle$, 1))
 #main.gb "Color Black; Backcolor Black"
 #main.gb "Cls; Fill Black"
 End Sub

'End the program
 Sub endDemo handle$
'Unload bitmaps to free memory
 For i = 1 to 4
 Unloadbmp "buttonPic";i
 Next i
 Close #main
 End
 End Sub

A List of Stylebits

You can get a list of all dwStyles and dwExStyles available with the Stylebits command at the MSDN
Library - Button Styles.
Be sure to precede these constants with an underscore (if constant is BS_PUSHLIKE, then LB Stylebits is
_BS_PUSHLIKE) when using Windows constants in your Liberty BASIC programs.

Powered by TCPDF (www.tcpdf.org)

 page 9 / 9

http://msdn.microsoft.com/en-us/library/ms632600(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms632680(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb775951(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb775951(VS.85).aspx
http://www.tcpdf.org

	Stylebits - Toggle Buttons

