Liberty BASIC Programmer's Encyc

TABSTRIPS AND CONTAINER CONTROLS
by Alyce Watson - http://alycesrestaurant.com/

Alyce

Table of Contents

Tabstrips
Let's Make a Tabstrip!

Container Controls

TabStrip Demo

Tabstrips

What is a tabstrip? You've probably seen programs that have dialog windows with tabstrip controls. They
appear to be a set of index cards, each with a tab at the top. Click a tab and bring the attached card to the
front of the pile. Here is one example that shows the second tab card clicked and brought to the front:

Fist Tsb Second Tab | Third Tab |

Second Tab Page!
Button 2

Let's Make a Tabstrip!

The tabstrip is part of the common control DLL, comctl32.dll. When we want to access the DLL, we must
first make a call to initialize it:

"initialize DLL
calldll #conttl 32, "InitComonControls", ret as void

Once we've done that, we use CreateWindowEXxA to create the control. You may be asking why we use a

page 1/ 14

http://alycesrestaurant.com/
https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce

Liberty BASIC Programmer's Encyc

"CreateWindow" function to create a control. Both windows and controls are created with this function.
We need to establish a struct and some constants for creating and manipulating the control. Liberty BASIC
doesn't have true constants. We can mimic them by using variables that we take care not to change within
our code. To differentiate them from variables, we type them in uppercase.

‘constants:

TCAF TEXT = 1

TC F. | MAGE =2

TCS. MULTI LI NE = 512
TCM | NSERTI TEMA = 4871
TCM GETCURSEL = 4875
TCM SETCURSEL = 4876

struct TCI TEM _

mask as ul ong, _
dwSt at e as ul ong, _
dwst at eMask as ul ong, _
pszText$ as ptr, _

txt Max as |ong, _

il mage as |ong, _

| Param as | ong

We need to get the handle of the program window, and then get its instance handle with
GetWindowLongA. The instance handle is needed by the CreateWindowExA function.

hwndPar ent = hwnd(#1) "retrieve wi ndow handl e

Get wi ndow i nstance handl e
Cal | DLL #user 32, "Get WndowLongA", _

hwndPar ent As ul ong, _ " parent wi ndow handl e
_OGAL_HI NSTANCE As long, _ 'flag to retrieve instance handl e
hl nst ance As ul ong "instance handl e

We can now create our tabstrip control. We aren't using an extended style flag in this example, so the first
argument is passed as "0." We use a class name of "SysTabControl32". This tells the function that we want
to creat a tab control. The next argument can be null, since the tab control doesn't have a caption.

The next argument is important. It sets the style flag for the control. The style bits are put together with the
bitwise "OR" operator. All controls must have the _WS_CHILD style, since controls are children of the
parent window. To make the control visible, we must also include the _WS_VISIBLE flag.
_WS_CLIPSIBLINGS clips child windows relative to each other; that is, when a particular child window
receives a WM_PAINT message, the WS_CLIPSIBLINGS style clips all other overlapping child windows

page 2/ 14

Liberty BASIC Programmer's Encyc

out of the region of the child window to be updated. If WS_CLIPSIBLINGS is not specified and child
windows overlap, it is possible, when drawing within the client area of a child window, to draw within the
client area of a neighboring child window. We'll also use the style for multiline tab controls.

The next arguments required by the function set the location and size of the control. These are relative to
the client area of the parent window. We also need the handle and instance handle of the parent window.
The argument for the menu is null, because tabstrips don't have a menu. The function returns the handle to
the tab control.

Create control

style = WS CHILD or _WS CLIPSIBLINGS or W5 VISIBLE _
or TCS. MULTI LI NE

cal l dl | #user 32, "CreateW ndowexA",

0 As long, _ extended style
"SysTabControl 32" as ptr, _ " class nane

"" as ptr, _ "title

style as long, _ " style

10 as long, _ " left x

10 as long, _ " top y

370 as long, _ " width

250 as long, _ " hei ght
hwndPar ent as ul ong, _ " parent hWwhd

0 as ulong, _ ' menu

hl nst ance as ul ong, _ " hlnstance
""as ptr, _ " w ndow creation data - not used

hwndTab as ul ong tab control handle

We now have a control in place, but it doesn't have any tabs! We'll have to send messages to the tab control
to add tabs, using the SendMessageA function. This requires that TCITEM struct that we created earlier.
We fill the struct with information about the tab to be added. The mask member requires bits to be set that
indicate which members of the struct are to be valid in the API call. These bits are for TCIF. TEXT and
TCIF.IMAGE. The ilmage member is set to -1, since no images will be displayed on the tabs in this demo.
The pszText$ member is filled with the desired tab label. The txtMax member is not strictly needed for
this function. It would be used to retrieve the tab label, however, so it is placed here for reference. Once
the struct is filled, the tab is added by sending the tab control the message TCM.INSERTITEMA. One
argument is the index of the tab being added. Remember that indexes are zero-based, so the first tab has an
index of 0, the second tab has an index of 1 and so on.

"set mask and fill struct nenbers:

TCl TEM mask. struct = TCIF. TEXT or TCl F. | MAGE
TG TEM i I mage. struct = -1 'no i mage

TCl TEM pszText $. struct = "First Tab"

page 3/ 14

Liberty BASIC Programmer's Encyc

"TCI TEM t xt Max. struct =l en("First Tab")+1
ot needed here

“add first tab:

cal I dl | #user32, "SendMessageA', _
hwndTab as ul ong, _
TCM | NSERTI TEMA as | ong, _
0 as long, _ ' zer o- based,
TCI TEM as struct, _
ret as |ong

‘used when retrieving text, n

so O=first tab

We add additional tabs in exactly the same way. We'll have three tabs in our demo. Here is the way we add

the remaining two tabs.

"add second tab:
TClI TEM pszText $. st ruct

" TCI TEM t xt Max. struct =l en(" Second Tab") +1

not needed here
cal I dl | #user32, "SendMessageA', _
hwndTab as ul ong, _
TCM | NSERTI TEMA as | ong, _
1 as long, _ ' zer o- based,
TCI TEM as struct, _
ret as |ong

"add third tab:
TCl TEM pszText $. struct = "Third Tab"
"TCI TEM t xt Max. struct=len("Third Tab") +1
not needed here
cal I dl | #user32, "SendMessageA', _
hwndTab as ul ong, _
TCM | NSERTI TEMA as | ong, _
2 as long, _ ' zer o- based,
TCI TEM as struct, _
ret as |ong

= "Second Tab"

"used when retrieving text,

so l=second tab

"used when retrieving text,

so 2=third tab

If you had a look at the control right now, you would notice that the font used for the captions of the
tabstrips is rather ugly. That is easily fixed. We can get the default gui font on the user's machine with a
simple call to GetStockObject. This retrieves the handle to the font, which we then use in SendMessageA
with a message of _WM_SETFONT to change the font on the captions.

cal I dl'l #gdi 32, "GCetStockObject”, _

page 4/ 14

Liberty BASIC Programmer's Encyc

_DEFAULT_GUI _FONT as | ong, hFont as ul ong

"set the font to the control:
Cal | DLL #user 32, "SendMessageA', _

hwndTab As ul ong, _ "tab control handl e
_WM SETFONT As long, 'nessage

hFont As | ong, _ "handl e of font

1 As long, _ "repaint flag

ret As |ong

We need to have some way to know when the user clicks on the tabs so that we can rearrange our tab
pages. Liberty BASIC cannot read messages sent from the tab control to the parent window. We can,
instead, use a timer to determine which tab has been clicked. We keep track of the current tab and if the
selected tab is different from the current tab, we do our changeover routine. We use SendMessageA with a
message of TCM.GETCURSEL and the function returns the ID of the tab that is selected.

ti mer 300, [checkFor Tab]

[checkFor Tab] "see if selected tab is the sane
"as previously selected tab and
' change controls if tab has changed
timer O "turn off tiner

‘get the current tab ID
cal I dl'I #user32, "SendMessageA', _

hwndTab as ul ong, _ "tab control handle
TCM GETCURSEL as | ong, _ 'message to get current selection
0 as long, 0 as long, "always 0's

tabl D as | ong returns selected tab ID

if tabl D <> ol dTab then ' change page displ ayed
ol dTab = tabl D "for next check of selected tab
gosub [cl ear]
call MoveW ndow wi nTab(tabl D), 20, 40, 350, 210

end if

print #1, "refresh”
timer 300, [checkFor Tab] "reactivate tiner
wai t

Now that we know how to create and manage the tab control itself, we'll need to know how to handle the
other controls that are to appear on the tab pages. One easy way to do this is to include all needed controls
in the window, placing the commands before the "open" statement for the window. Then we'll need to

page 5/ 14

Liberty BASIC Programmer's Encyc

move the correct controls onto the window depending upon which tab is selected, and move all of the
others off the window. We can do this with the "locate" command, being sure to "refresh" the window
after the controls are moved. This is easy to do, but it requires quite a few lines of code to move each
single control every time the user selects a tab. We'll use a different method that simulates "container
controls" that are available in some other languages.

Table of Contents

Tabstrips
Let's Make a Tabstrip!

Container Controls

TabStrip Demo

Container Controls

A container control holds other controls. Whenever anything happens to the container, the controls
contained upon it are affected as well. Move the container and the child controls move with it. Hide the
container and the child controls are also hidden. At first I didn't think we had this capability in Liberty
BASIC, but then I remembered that we have a window with style "dialog_popup". This style has no
titlebar. We can create a dialog_popup window for each tab and use if for that tab's page. Any controls on
this window will move with it, so when we move a container window onto the program window, all of its
controls move with it. We only need to make one call to move a control for each tab. We don't have to
move each individual control used by the program.

Let's set up three dialog_popup windows to act as our three tab pages. We'll put a few controls on each
one.

"first page

Statictext #tabl.sl, "First Tab Page!", 145, 75, 180, 30
Button #tabl.bl, "Button 1", [buttonOne], UL, 145, 140, 90, 24
open "" for wi ndow popup as #tabl

'second page
Text box #tab2.t2, 40, 40, 180, 30
Button #tab2. b2, "Button 2", [buttonTwo], UL, 40, 80, 90, 24

page 6/ 14

Liberty BASIC Programmer's Encyc

open "" for w ndow_popup as #tab2

"third page

gr aphi cbox #tab3.g, 0, 0, 350, 210
open "" for w ndow _popup as #tab3

We can make a call to SetParent to make our dialog_popup windows children of the main program
window. To handle this in a loop, we can get the window handles to these "container" windows and store
them in an array.

hTabl=hwnd(#t abl) : hTab2=hwnd(#t ab2) : hTab3=hwnd(#t ab3)
di mw nTab(3) 'hold tab wi ndow handles in array
wi nTab(0) =hTabl1: wi nTab(1) =hTab2: wi nTab(2) =hTab3

'set popups to be children of main program w ndow
for i = 0to 2
cal |l Set Parent hwndParent,w nTab(i)
next

Whenever we want to change the page that is displayed, we can access a subroutine that moves all of the
container windows offscreen in a loop. This gives us a blank tab control.

[clear] "hide all w ndows

for i = 0to 2

call MoveW ndow wi nTab(i), 3000, 3000, 350, 210
next
return

Once the tab control is clear, we can move the desired container window onto it.

call MywveW ndow hTabl, 20, 40, 350, 210

We've wrapped the SetParent and MoveWindow functions in Liberty BASIC functions like so:

Sub Set Parent hWhd, hwadChi | d
Cal | DLL #user32, "SetParent”, hWhdChild As ulLong, _
hwhd As ulLong, result As ulLong
style = W5 CH LD or _W5 VI SI BLE
Cal | DLL #user 32, "Set WndowLongA", _
hwhdChild As ulong, _GAL_STYLE As |ong, _
style As Long, r As long
End Sub

page 7/ 14

Liberty BASIC Programmer's Encyc

Sub MoveW ndow hWhd, x, y, w, h
Cal | DLL #user 32, "MyveW ndow', hwid As ulLong, _
x As Long, y As Long, w As Long, h As Long, _
1 As Bool ean, r As Bool ean
End Sub

That is just about all we need to know. There is one "gotcha" though. If we include a graphicbox on one of
the container windows, we will generate an error when the program ends. To avoid this, we do a GetParent
call to get the parent window of the graphicbox. We'll store this handle in a variable for use later. When
the program ends, we use SetParent to give the graphicbox its proper parent window again.

" because of graphicbox, get parent on third tab wi ndow for use |ater
hTab3Par ent =Cet Par ent (hTab3)

[quit]
timer O
' because of graphicbox, restore parent to third tab w ndow
call SetParent hTab3Parent, hTab3
cl ose #1:cl ose #tabl:cl ose #tab2:close #tab3: end

Function Get Par ent (hwhd)
call dl'l #user32, "GetParent", hWhd as ul ong, _
Get Parent as ul ong
End Function

TabStrip Demo

Alyce ui 21,2006

"tab control deno

use di al og_popup wi ndows to hold controls

'set parent of popups to be main program w ndow

"when tab is clicked, use MoveW ndow to nove popups on and off
"if a graphicbox is used, use CetParent on popup

i f graphicbox is used, restore parent of popup at close

page 8/ 14

https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce

Liberty BASIC Programmer's Encyc

"doesn't work properly with type w ndow_popup

nonai NW n
‘constants:
TCAF TEXT = 1
TC F. | MAGE =2
TCS. MULTI LI NE = 512
TCM | NSERTI TEMA = 4871
TCM GETCURSEL = 4875
TCM SETCURSEL = 4876

tablD = 1 "current tab
oldTab = 0 'previously selected tab

struct TCI TEM _

mask as ul ong, _

dwSt ate as ul ong, _
dwst at eMask as ul ong, _
pszText$ as ptr, _

txt Max as |ong, _

i lmage as |ong, _

| Param as | ong

‘initialize DLL
calldll #conttl 32, "InitComopnControls",
W ndowW dt h=350: W ndowHei ght =210

" exanpl e controls:
"first page

ret as void

Statictext #tabl.sl, "First Tab Page!", 145, 75, 180, 30

Button #tabl.bl, "Button 1", [buttonOne],
open "" for wi ndow _popup as #tabl

'second page
Text box #tab2.t2, 40, 40, 180, 30
Button #tab2. b2, "Button 2", [buttonTwo],

open "" for w ndow_popup as #tab2

"third page

gr aphi cbox #tab3.g, 0, 0, 350, 210
open "" for w ndow _popup as #tab3

"mai n program w ndow
W ndowwW dt h = 400: W ndowHei ght = 300
open "Tab Denp" for w ndow nf as #1

UL, 145, 140, 90, 24

uL, 40, 80, 90, 24

page 9/ 14

Liberty BASIC Programmer's Encyc

print #1, "trapclose [quit]"
print #1, "font ns_sans_serif 10"
#tab2.t2 "Second Tab Page!"

print #tab3.g, "down; fill blue; color white"

print #tab3.g, "backcol or bl ue"

print #tab3.g, "place 30 50;\Third page!\dick M!"

print #tab3.g, "flush"

print #tab3.g, "setfocus; when |eftButtonDown [nousedick]"

hwndPar ent = hwnd(#1) "retrieve wi ndow handl e
hTabl=hwnd(#t abl) : hTab2=hwnd(#t ab2) : hTab3=hwnd(#t ab3)
di mw nTab(3) 'hold tab wi ndow handles in array
wi nTab(0) =hTabl1: wi nTab(1) =hTab2: wi nTab(2) =hTab3

' because of graphicbox, get parent on third tab wi ndow for use |ater
hTab3Par ent =Cet Par ent (hTab3)

'set popups to be children of main program w ndow
for i = 0to 2

cal |l Set Parent hwndParent,w nTab(i)
next

"nmove child wi ndows
gosub [cl ear]
call MoveW ndow hTabl, 20, 40, 350, 210

' Get w ndow instance handl e
Cal | DLL #user 32, "Get WndowLongA", _

hwndPar ent As ul ong, _ ' parent w ndow handl e
_OGAL_HI NSTANCE As long, 'flag to retrieve instance handl e
hl nst ance As ul ong "instance handl e

" Create contro

style = W5 CHI LD or _WS CLIPSIBLINGS or W5 VISIBLE _
or TCS. MULTI LI NE

cal l dl | #user32, "CreateW ndowExA",

0 As long, _ ext ended style
"SysTabControl 32" as ptr,_ ' class nane
""as ptr, _

style as long, _ " style

10 as long, _ "left x

10 as long, _ " topy

370 as long, _ " width

250 as long, _ " hei ght

page 10/ 14

Liberty BASIC Programmer's Encyc

hwndPar ent as ul ong, _ " parent hWwhd
0 as long, _
hl nst ance as ul ong, _ " hlnstance

""as ptr, _
hwndTab as ul ong " tab control handl e

"set mask and fill struct nenbers:

TCl TEM nmask. struct = TCI F. TEXT or TCl F. | MAGE
TG TEM i I mage. struct = -1 'no i nmage

TCl TEM pszText $. struct = "First Tab"

"TCI TEM t xt Max. struct =l en("First Tab")+1 'used when retrieving text,
ot needed here

"add first tab:
cal I dl'I #user32, "SendMessageA', _
hwndTab as ul ong, _
TCM | NSERTI TEMA as | ong, _
0 as long, _ ' zero-based, so O=first tab
TCl TEM as struct, _
ret as |ong

‘add second tab:
TCl TEM pszText $. struct = "Second Tab"

n

" TCI TEM t xt Max. struct =l en(" Second Tab")+1 'used when retrieving text,

not needed here
cal I dl'I #user32, "SendMessageA', _

hwndTab as ul ong, _

TCM | NSERTI TEMA as | ong, _

1 as long, _ ' zer o- based, so l1l=second tab
TCI TEM as struct, _

ret as |ong

"add third tab:
TCl TEM pszText $. struct = "Third Tab"

"TCI TEM t xt Max. struct =l en("Third Tab")+1 'used when retrieving text,

not needed here
cal I dl'I #user32, "SendMessageA', _
hwndTab as ul ong, _
TCM | NSERTI TEMA as | ong, _
2 as long, _ ‘zero-based, so 2=third tab
TCI TEM as struct, _
ret as |ong

page 11/ 14

Liberty BASIC Programmer's Encyc

cal I dl I #gdi 32,

"set the font to the control
"SendMessageA", _

Cal | DLL #user 32,
hwndTab As ul ong, _
_VWM SETFONT As | ong, _
hFont As ul ong, _

1 As long, _
ret As |ong
ti mer 300, [checkFor Tab]

cal I dl |
wai t

#user 32,

[quit]
timer O
' because of graphicbox,
call

Set Par ent hTab3Par ent,

"Get St ockObj ect”,
_DEFAULT_QGUI _FONT as | ong,

hFont as ul ong

tab control handl e
nmessage
handl e of font

repaint flag

" Set Focus", hwndParent as ul ong,re as ul ong

restore parent to third tab w ndow

hTab3

[checkFor Tab]

cl ose #1:cl ose #tabl: cl ose #tab2:cl ose #tab3: end

"see if selected tab is the sane
"as previously selected tab and
' change controls if tab has changed

tinmer O

‘get the current tab ID
cal I dl'l #user 32,
hwndTab as ul ong, _

TCM GETCURSEL as | ong, _

0 as long, 0 as long, _
tabl D as | ong

if tabl D <> ol dTab t hen

"turn off tinmer

"SendMessageA", _

tab control handle

nmessage to get current selection
al ways 0's

returns selected tab ID

change page di spl ayed

ol dTab = tabl D "for next check of selected tab
gosub [cl ear]
call MoveW ndow wi nTab(tabl D), 20, 40, 350, 210

end if

print #1, "refresh”

timer 300, [checkFor Tab] "reactivate tiner

wai t

[butt onOnel
timer O
notice "First page."

page 12/ 14

Liberty BASIC Programmer's Encyc

ti mer 300, [checkFor Tab]
wai t

[butt onTwo]
timer O
#tab2.t2 "lcontents? txt$"
notice "Textbox contents: ";txt$
ti mer 300, [checkFor Tab]
wai t

[roused i ck]
timer O
notice "Mwuse clicked on third page.”
ti mer 300, [checkFor Tab]
wai t

[clear] "hide all w ndows

for i = 0to 2

call MoveW ndow wi nTab(i), 3000, 3000, 350, 210
next
return

Function Get Par ent (hwhd)
calldl'l #user32, "GetParent", hWhd as ul ong, _
Get Parent as ul ong
End Function

Sub Set Par ent hwhd, hwhdChi | d

Cal I DLL #user 32, "SetParent”, hwdChild As ulLong, _

hwhd As ulLong, result As ulLong

style = WS CHILD or W5 VI SIBLE

Cal | DLL #user 32, "Set WndowLongA", _
hwhdChild As ulong, _GAL_STYLE As |ong, _
style As Long, r As |long

End Sub

Sub MoveW ndow hWhd, x, y, w, h
Cal | DLL #user 32, "MyveW ndow', hWwhd As ulLong, _

x As Long, y As Long,w As Long, h As Long, _

1 As Bool ean, r As Bool ean
End Sub

Table of Contents

page 13/ 14

Liberty BASIC Programmer's Encyc

Tabstrips
Let's Make a Tabstrip!

Container Controls

TabStrip Demo

page 14/ 14

http://www.tcpdf.org

	TabStrips

