
Liberty BASIC Programmer's Encyc

Trapping Mouse Actions and the When Commands

June 9, 2006 -
 JanetTerra Jun 9, 2006

When using a Graphics Window, or a Graphicbox inside a Window, Liberty BASIC gives an easy way to
detect mouse button events and mouse movements. These mouse events and movements are (from the
Liberty BASIC help file) -

leftButtonDown - the left mouse button has been pressed
leftButtonUp - the left mouse button has been released
leftButtonMove - the mouse moved while the left button was down
leftButtonDouble - the left mouse button has been double-clicked

rightButtonDown - the right mouse button has been pressed
rightButtonUp - the right mouse button has been released
rightButtonMove - the mouse moved while the right button was down
rightButtonDouble - the right mouse button has been double-clicked

middleButtonDown - the middle mouse button has been pressed
middleButtonUp - the middle mouse button has been released
middleButtonMove - the mouse moved while the middle button was down
middleButtonDouble - the middle mouse button has been double-clicked

mouseMove - the mouse moved when no button was down

The commands are case sensitive. An example of a When command is

Print #main.g, "When leftButtonUp [LeftClickHere]"

Clicking, moving or releasing the mouse buttons is what triggers these events. This first demo
demonstrates trapping a Left Button Click and a Right Button Click.

 '
 ' Demo demonstrating
 ' When leftButtonUp
 ' When rightButtonUp

 WindowWidth = 407
 WindowHeight = 350

 UpperLeftX = Int((DisplayWidth - WindowWidth)/2)

 page 1 / 13

https://www.wikispaces.com/user/view/JanetTerra
https://www.wikispaces.com/user/view/JanetTerra

Liberty BASIC Programmer's Encyc

 UpperLeftY = Int((DisplayHeight - WindowHeight)/2)

 ' Define a Menu
 Menu #main, "&Options", "E&xit", [EndDemo]
 ' Define a Graphicbox
 Graphicbox #main.g, 0, 0, 400, 300
 ' Open the Window
 Open "The Mouse When Commands" for Window as #main
 ' Add the Trapclose statement to properly end the program
 Print #main, "Trapclose [EndDemo]"
 ' Add the When leftButtonUp command
 Print #main.g, "When leftButtonUp [ButtonLeftUp]"
 Print #main.g, "When rightButtonUp [ButtonRightUp]"

 ' Place the pen in the Down position
 Print #main.g, "Down"
 ' Fill the graphicbox with Darkcyan
 Print #main.g, "Fill Darkcyan"
 ' Assign the pen color as Darkblue
 Print #main.g, "Color Darkblue"
 ' Assign the backcolor as Darkcyan
 Print #main.g, "Backcolor Darkcyan"
 ' Assign a position
 Print #main.g, "Place 100 50"
 ' Write the directions
 Print #main.g, "\\Left Button Up - Fills Yellow"
 Print #main.g, "\\Right Button Up - Fills Green"
 ' Preserve the graphics
 Print #main.g, "Flush"
 ' Await the user's next move
 Wait

[EndDemo]
 Close #main
 End

[ButtonLeftUp]
 ' Clear the graphicbox and clear memory
 Print #main.g, "Cls"
 ' Fill the graphicbox with the color Yellow
 Print #main.g, "Fill Yellow"
 ' Assign the pen color as Darkblue
 Print #main.g, "Color Darkblue"
 ' Assign the backcolor as Yellow
 Print #main.g, "Backcolor Yellow"
 ' Place the pen

 page 2 / 13

Liberty BASIC Programmer's Encyc

 Print #main.g, "Place 100 50"
 ' Write the directions
 Print #main.g, "\\Left Button Up - Fills Yellow"
 Print #main.g, "\\Right Button Up - Fills Green"
 ' Preserve the graphics
 Print #main.g, "Flush"
 ' Await the user's next move
 Wait

[ButtonRightUp]
 ' Clear the graphicbox and clear memory
 Print #main.g, "Cls"
 ' Fill the graphicbox with the color Green
 Print #main.g, "Fill Green"
 ' Assign the pen color as Darkblue
 Print #main.g, "Color Darkblue"
 ' Assign the backcolor as Green
 Print #main.g, "Backcolor Green"
 ' Place the pen
 Print #main.g, "Place 100 50"
 ' Write the directions
 Print #main.g, "\\Left Button Up - Fills Yellow"
 Print #main.g, "\\Right Button Up - Fills Green"
 ' Preserve the graphics
 Print #main.g, "Flush"
 ' Await the user's next move
 Wait

Using the When command not only detects mouse clicks and movements, but also retrieves the x and y
positions of the mouse when the event occurred. The x and y positions are stored in the special variables
MouseX and MouseY. The variables MouseX and MouseY are also case sensitive. mouseX or MOUSEY
will not work.

This second demo detects when the left button or right button has been depressed and released (When
leftButtonUp, When rightButtonUp) and also retrieves the mouse coordinates (MouseX and MouseY).

 '
 ' Demo demonstrating
 ' When leftButtonUp
 ' When rightButtonUp
 ' MouseX
 ' MouseY

 WindowWidth = 407
 WindowHeight = 350

 page 3 / 13

Liberty BASIC Programmer's Encyc

 UpperLeftX = Int((DisplayWidth - WindowWidth)/2)
 UpperLeftY = Int((DisplayHeight - WindowHeight)/2)

 ' Define a Menu
 Menu #main, "&Options", "E&xit", [EndDemo]
 ' Define a Graphicbox
 Graphicbox #main.g, 0, 0, 400, 300
 ' Open the Window
 Open "The Mouse When Commands" for Window as #main
 ' Add the Trapclose statement to properly end the program
 Print #main, "Trapclose [EndDemo]"
 ' Add the When leftButtonUp command
 Print #main.g, "When leftButtonUp [ButtonLeftUp]"
 Print #main.g, "When rightButtonUp [ButtonRightUp]"

 ' Place the pen in the Down position
 Print #main.g, "Down"
 ' Fill the graphicbox with Darkcyan
 Print #main.g, "Fill Darkcyan"
 ' Assign the pen color as Darkblue
 Print #main.g, "Color Darkblue"
 ' Assign the backcolor as Darkcyan
 Print #main.g, "Backcolor Darkcyan"
 ' Assign a position
 Print #main.g, "Place 100 50"
 ' Write the directions
 Print #main.g, "\\Left Button Up - Draw Circle"
 Print #main.g, "\\Right Button Up - Draw Square"
 ' Preserve the graphics
 Print #main.g, "Flush"
 ' Await the user's next move
 Wait

[EndDemo]
 Close #main
 End

[ButtonLeftUp]
 ' Obtain mouse x, y positions with the special
 ' variables MouseX and MouseY
 ' Note that MouseX and MouseY are CASE SENSITIVE
 ' mousex, mouseY, etc. will not work
 x = MouseX
 y = MouseY
 ' Clear the graphicbox and clear memory

 page 4 / 13

Liberty BASIC Programmer's Encyc

 Print #main.g, "Cls"
 ' Fill the graphicbox with the color Yellow
 Print #main.g, "Fill Yellow"
 ' Assign the pen color as Darkblue
 Print #main.g, "Color Darkblue"
 ' Assign the backcolor as Darkblue
 Print #main.g, "Backcolor Darkblue"
 ' Place the pen at the mouse click position
 Print #main.g, "Place ";x;" ";y
 ' Draw a filled circle
 Print #main.g, "Circlefilled 20"
 ' Assign the pen color as Black
 Print #main.g, "Color Black"
 ' Assign the backcolor as Yellow
 Print #main.g, "Backcolor Yellow"
 ' Assign a position
 Print #main.g, "Place 100 50"
 ' Write the directions
 Print #main.g, "\\Left Button Up - Draw Circle"
 Print #main.g, "\\Right Button Up - Draw Square"
 ' Preserve the graphics
 Print #main.g, "Flush"
 ' Await the user's next move
 Wait

[ButtonRightUp]
 ' Obtain mouse x, y positions with the special
 ' variables MouseX and MouseY
 ' Note that MouseX and MouseY are CASE SENSITIVE
 ' mousex, mouseY, etc. will not work
 x = MouseX
 y = MouseY
 ' Clear the graphicbox and clear memory
 Print #main.g, "Cls"
 ' Fill the graphicbox with the color Green
 Print #main.g, "Fill Green"
 ' Assign the pen color as Darkblue
 Print #main.g, "Color Darkblue"
 ' Assign the backcolor as Darkblue
 Print #main.g, "Backcolor Darkblue"
 ' Place the pen at the mouse click position
 Print #main.g, "Place ";x;" ";y
 ' Draw a filled square
 Print #main.g, "Boxfilled ";x + 40;" ";y + 40
 ' Assign the pen color as Black
 Print #main.g, "Color Black"

 page 5 / 13

Liberty BASIC Programmer's Encyc

 ' Assign the backcolor as Green
 Print #main.g, "Backcolor Green"
 ' Assign a position
 Print #main.g, "Place 100 50"
 ' Write the directions
 Print #main.g, "\\Left Button Up - Draw Circle"
 Print #main.g, "\\Right Button Up - Draw Square"
 ' Preserve the graphics
 Print #main.g, "Flush"
 ' Await the user's next move
 Wait

The When command can track MouseX and MouseY coordinates when the mouse moves as well. This can
be very advantageous when the user is clicking and dragging drawn objects. In this third demo, MouseX
and MouseY are retrieved when the left button is first depressed (When leftButtonDown). This initiates
the drawing of a filled circle at that spot. MouseX and MouseY represent the number of pixels from the
upper left corner of the Graphics Window or Graphicbox. Moving the mouse while keeping the left button
depressed (When leftButtonMove) "drags" the circle along the path of the mouse. Releasing the left button
(When leftButtonUp) places the final circle drawing at MouseX and MouseY where the mouse was
positioned at the time of the left button release.

 '
 ' Demo demonstrating
 ' When leftButtonDown
 ' When leftButtonMove
 ' When leftButtonUp
 ' MouseX
 ' MouseY

 WindowWidth = 407
 WindowHeight = 350

 UpperLeftX = Int((DisplayWidth - WindowWidth)/2)
 UpperLeftY = Int((DisplayHeight - WindowHeight)/2)

 ' Define a Menu
 Menu #main, "&Options", "E&xit", [EndDemo]
 ' Define a Graphicbox
 Graphicbox #main.g, 0, 0, 400, 300
 ' Open the Window
 Open "The Mouse When Commands" for Window as #main
 ' Add the Trapclose statement to properly end the program
 Print #main, "Trapclose [EndDemo]"
 ' Add the When leftButton commands
 Print #main.g, "When leftButtonDown [ButtonLeftDown]"

 page 6 / 13

Liberty BASIC Programmer's Encyc

 Print #main.g, "When leftButtonMove [ButtonLeftMove]"
 Print #main.g, "When leftButtonUp [ButtonLeftUp]"

 ' Place the pen in the Down position
 Print #main.g, "Down"
 ' Fill the graphicbox with Yellow
 Print #main.g, "Fill Yellow"
 ' Assign the pen color as Black
 Print #main.g, "Color Black"
 ' Assign the backcolor as Yellow
 Print #main.g, "Backcolor Yellow"
 ' Assign a position
 Print #main.g, "Place 100 50"
 ' Write the directions
 Print #main.g, "\\Left Button Down - Start Circle"
 Print #main.g, "\\Left Button Move - Drag Circle"
 Print #main.g, "\\Left Button Up - Place Circle"
 Wait

[EndDemo]
 Close #main
 End

[ButtonLeftDown]
 ' Obtain mouse x, y positions with the special
 ' variables MouseX and MouseY
 ' Note that MouseX and MouseY are CASE SENSITIVE
 ' mousex, mouseY, etc. will not work
 xOld = MouseX
 yOld = MouseY
 ' Clear the graphicbox and clear memory
 Print #main.g, "Cls"
 ' Fill the graphicbox with the color Yellow
 Print #main.g, "Fill Yellow"
 ' Assign the pen color as Darkblue
 Print #main.g, "Color Darkblue"
 ' Assign the backcolor as Darkblue
 Print #main.g, "Backcolor Darkblue"
 ' Place the pen at the mouse click position
 Print #main.g, "Place ";xOld;" ";yOld
 ' Draw a filled circle
 Print #main.g, "Circlefilled 20"
 ' Don't preserve the graphic
 Print #main.g, "Discard"
 ' Await the user's next move
 Wait

 page 7 / 13

Liberty BASIC Programmer's Encyc

[ButtonLeftMove]
 ' Obtain mouse x, y positions with the special
 ' variables MouseX and MouseY
 ' Note that MouseX and MouseY are CASE SENSITIVE
 ' mousex, mouseY, etc. will not work
 xNew = MouseX
 yNew = MouseY
 ' Erase the previous circle by drawing in background color
 ' Assign the pen color as Yellow
 Print #main.g, "Color Yellow"
 ' Assign the backcolor as Yellow
 Print #main.g, "Backcolor Yellow"
 ' Place the pen at the old mouse position
 Print #main.g, "Place ";xOld;" ";yOld
 ' Draw a filled circle
 Print #main.g, "Circlefilled 20"
 ' Draw the new circle by in Darkblue
 ' Assign the pen color as Darkblue
 Print #main.g, "Color Darkblue"
 ' Assign the backcolor as Darkblue
 Print #main.g, "Backcolor Darkblue"
 ' Place the pen at the new mouse position
 Print #main.g, "Place ";xNew;" ";yNew
 ' Draw a filled circle
 Print #main.g, "Circlefilled 20"
 ' Don't preserve the graphics
 Print #main.g, "Discard"
 ' Await the user's next move
 ' Make the new x and new y the old x and old y
 xOld = xNew
 yOld = yNew
 Wait

[ButtonLeftUp]
 ' Obtain mouse x, y positions with the special
 ' variables MouseX and MouseY
 ' Note that MouseX and MouseY are CASE SENSITIVE
 ' mousex, mouseY, etc. will not work
 xFinal = MouseX
 yFinal = MouseY
 ' Clear the graphicbox and clear memory
' Print #main.g, "Cls"
 ' Fill the graphicbox with the color Yellow
' Print #main.g, "Fill Yellow"
 ' Assign the pen color as Darkblue

 page 8 / 13

Liberty BASIC Programmer's Encyc

 Print #main.g, "Color Darkblue"
 ' Assign the backcolor as Darkblue
 Print #main.g, "Backcolor Darkblue"
 ' Place the pen at the mouse click position
 Print #main.g, "Place ";xFinal;" ";yFinal
 ' Draw a filled circle
 Print #main.g, "Circlefilled 20"
 ' Assign the pen color as Black
 Print #main.g, "Color Black"
 ' Assign the backcolor as Yellow
 Print #main.g, "Backcolor Yellow"
 ' Assign a position
 Print #main.g, "Place 100 50"
 ' Write the directions
 Print #main.g, "\\Left Button Down - Start Circle"
 Print #main.g, "\\Left Button Move - Drag Circle"
 Print #main.g, "\\Left Button Up - Place Circle"
 ' Preserve the graphics
 Print #main.g, "Flush"
 ' Await the user's next move
 Wait

No Button Clicking

It may be desirable at times to track the MouseX and MouseY position of the mouse as it moves over the
Graphics Window or Graphicbox. This is done with the command

Print #main.g, "When mouseMove"

This fourth demo is very similar to the third demo above, except no button clicking is required to start and
stop the drawing of the filled circle.

 ' Demo demonstrating
 ' When mouseMove
 ' MouseX
 ' MouseY

 WindowWidth = 407
 WindowHeight = 350

 UpperLeftX = Int((DisplayWidth - WindowWidth)/2)
 UpperLeftY = Int((DisplayHeight - WindowHeight)/2)

 page 9 / 13

Liberty BASIC Programmer's Encyc

 ' Define a Menu
 Menu #main, "&Options", "E&xit", [EndDemo]
 ' Define a Graphicbox
 Graphicbox #main.g, 0, 0, 400, 300
 ' Open the Window
 Open "The Mouse When Commands" for Window as #main
 ' Add the Trapclose statement to properly end the program
 Print #main, "Trapclose [EndDemo]"
 ' Add the When leftButton commands
 Print #main.g, "When mouseMove [MouseMoving]"

 ' Place the pen in the Down position
 Print #main.g, "Down"
 ' Fill the graphicbox with Yellow
 Print #main.g, "Fill Yellow"
 ' Assign the pen color as Black
 Print #main.g, "Color Black"
 ' Assign the backcolor as Yellow
 Print #main.g, "Backcolor Yellow"
 ' Assign a position
 Print #main.g, "Place 100 50"
 ' Write the directions
 Print #main.g, "\\Move Mouse Over this Area"
 ' Preserve the graphics
 Print #main.g, "Flush"
 Wait

[EndDemo]
 Close #main
 End

[MouseMoving]
 ' Obtain mouse x, y positions with the special
 ' variables MouseX and MouseY
 ' Note that MouseX and MouseY are CASE SENSITIVE
 ' mousex, mouseY, etc. will not work
 xNew = MouseX
 yNew = MouseY
 ' Erase the previous circle by drawing in background color
 ' Assign the pen color as Yellow
 Print #main.g, "Color Yellow"
 ' Assign the backcolor as Yellow
 Print #main.g, "Backcolor Yellow"
 ' Place the pen at the old mouse position
 Print #main.g, "Place ";xOld;" ";yOld

 page 10 / 13

Liberty BASIC Programmer's Encyc

 ' Draw a filled circle
 Print #main.g, "Circlefilled 20"
 ' Draw the new circle by in Darkblue
 ' Assign the pen color as Darkblue
 Print #main.g, "Color Darkblue"
 ' Assign the backcolor as Darkblue
 Print #main.g, "Backcolor Darkblue"
 ' Place the pen at the new mouse position
 Print #main.g, "Place ";xNew;" ";yNew
 ' Draw a filled circle
 Print #main.g, "Circlefilled 20"
 ' Don't preserve the graphics
 Print #main.g, "Discard"
 ' Assign the color as Black"
 Print #main.g, "Color Black"
 ' Assign the backcolor as Yellow
 Print #main.g, "Backcolor Yellow"
 ' Assign a position
 Print #main.g, "Place 100 50"
 ' Write the directions
 Print #main.g, "\\Move Mouse Over this Area"
 ' Preserve the graphics
 Print #main.g, "Flush"
 ' Make the new x and new y the old x and old y
 xOld = xNew
 yOld = yNew
 ' Await the user's next move
 Wait

Using a Sub as the Event Handler

Mouse events can be sent to a Sub rather than a [BranchLabel]. When that event is sent, sub variables must
be present to receive the handle of the sending graphicbox or graphicswindow and the x and y mouse
coordinates. This is true even if you don't necessarily need that information. Unlike branch events, you
need not use special variables to receive this information. Rather than MouseX and MouseY, any receiving
variables will do.

 '
 ' Demo demonstrating
 ' When leftButtonUp
 ' When rightButtonUp

 page 11 / 13

Liberty BASIC Programmer's Encyc

 Nomainwin
 WindowWidth = 407
 WindowHeight = 350

 UpperLeftX = Int((DisplayWidth - WindowWidth)/2)
 UpperLeftY = Int((DisplayHeight - WindowHeight)/2)

 ' Define a Menu
 Menu #main, "&Options", "E&xit", [EndDemo]
 ' Define a Graphicbox
 Graphicbox #main.g, 0, 0, 400, 300
 ' Open the Window
 Open "The Mouse When Commands" for Window as #main
 ' Add the Trapclose statement to properly end the program
 Print #main, "Trapclose EndDemo"
 ' Add the When leftButtonUp command
 Print #main.g, "When leftButtonUp ButtonLeftUp"

 ' Place the pen in the Down position
 Print #main.g, "Down"
 ' Fill the graphicbox with Darkcyan
 Print #main.g, "Fill Darkcyan"
 ' Assign the pen color as Darkblue
 Print #main.g, "Color Darkblue"
 ' Assign the backcolor as Darkcyan
 Print #main.g, "Backcolor Darkcyan"
 ' Assign a position
 Print #main.g, "Place 100 50"
 ' Write the directions
 Print #main.g, "\\Click Left Mouse Button"
 ' Preserve the graphics
 Print #main.g, "Flush"
 ' Await the user's next move
 Wait

Sub EndDemo handle$
 Close #handle$
End Sub

Sub ButtonLeftUp handle$, xClick, yClick
 ' handle$ receives the handle of the graphicbox
 ' xClick and yClick receive the mouse x and y coordinates
 ' Clear the graphicbox and clear memory
 Print #handle$, "Cls"
 ' Fill the graphicbox with the color Yellow
 Print #handle$, "Fill Yellow"

 page 12 / 13

Liberty BASIC Programmer's Encyc

 ' Assign the pen color as Darkblue
 Print #handle$, "Color Darkblue"
 ' Assign the backcolor as Yellow
 Print #handle$, "Backcolor Yellow"
 ' Place the pen
 Print #handle$, "Place ";xClick;" ";yClick
 ' Write the receiving information
 Print #handle$, "\Handle = ";handle$
 Print #handle$, "\Mouse X Position = ";xClick
 Print #handle$, "\Mouse Y Position = ";yClick
 ' Preserve the graphics
 Print #handle$, "Flush"
 ' End the sub and return to previous state
End Sub

Trapping Keyboard Events

The When command can also be used to track keyboard events (pressing a key), but only if the Graphics
Window or Graphicbox has focus. The command is

Print #main.g, "When characterInput[KeyWasPressed]

The pressed key is stored in the special variable Inkey$. It is important to remember that When
characterInput can only be used with a Graphics Window or Graphicbox, and only when that window or
box has focus.

For more information concerning the When characterInput command, see Capturing Keypresses with
When characterInput and Inkey$.

Powered by TCPDF (www.tcpdf.org)

 page 13 / 13

/Tutorial%20Inkey
/Tutorial%20Inkey
http://www.tcpdf.org

	Tutorial WhenMouse

