Liberty BASIC Programmer's Encyc

Trapping Mouse Actions and the When Commands

June 9, 2006 -
JanetTerra jun 9, 2006

When using a Graphics Window, or a Graphicbox inside a Window, Liberty BASIC gives an easy way to
detect mouse button events and mouse movements. These mouse events and movements are (from the
Liberty BASIC help file) -

¢ leftButtonDown - the left mouse button has been pressed

¢ leftButtonUp - the left mouse button has been released

¢ leftButtonMove - the mouse moved while the left button was down
¢ leftButtonDouble - the left mouse button has been double-clicked

¢ rightButtonDown - the right mouse button has been pressed

¢ rightButtonUp - the right mouse button has been released

¢ rightButtonMove - the mouse moved while the right button was down
¢ rightButtonDouble - the right mouse button has been double-clicked

¢ middleButtonDown - the middle mouse button has been pressed

¢ middleButtonUp - the middle mouse button has been released

¢ middleButtonMove - the mouse moved while the middle button was down
¢ middleButtonDouble - the middle mouse button has been double-clicked

* mouseMove - the mouse moved when no button was down

The commands are case sensitive. An example of a When command is

Print #main.g, "Wien leftButtonUp [LeftClickHere]"

Clicking, moving or releasing the mouse buttons is what triggers these events. This first demo
demonstrates trapping a Left Button Click and a Right Button Click.

' Denp denonstrating
' When | ef t Butt onUp
' When right ButtonUp

W ndoww dt h = 407
W ndowHei ght = 350

UpperLeft X = Int((Di splayWdth - W ndowW dt h)/ 2)

page 1/ 13

https://www.wikispaces.com/user/view/JanetTerra
https://www.wikispaces.com/user/view/JanetTerra

Liberty BASIC Programmer's Encyc

UpperLeftY = Int((D splayHei ght - W ndowHei ght)/ 2)

' Define a Menu

Menu #main, "&Options", "E&it", [EndDenp]

' Define a G aphi cbox

G aphi cbox #main.g, 0, 0, 400, 300

' Open the W ndow

Qpen "The Mouse When Commands" for W ndow as #main
' Add the Trapcl ose statenent to properly end the program
Print #main, "Trapclose [EndDeno]"

' Add the When | eftButtonUp comrand

Print #main.g, "Wen |leftButtonUp [ButtonLeftUp]"
Print #main.g, "Wen rightButtonUp [ButtonRi ght Up]"

' Pl ace the pen in the Down position

Print #main.g, "Down"

' Fill the graphicbox w th Darkcyan

Print #main.g, "Fill Darkcyan”

' Assign the pen col or as Darkbl ue

Print #main.g, "Color Darkblue"

' Assign the backcol or as Darkcyan

Print #main.g, "Backcolor Darkcyan"

' Assign a position

Print #main.g, "Place 100 50"

' Wite the directions

Print #main.g, "\\Left Button Up - Fills Yell ow
Print #main.g, "\\Right Button Up - Fills Geen"
Preserve the graphics

Print #main.g, "Flush"

Await the user's next nove

Wi t

[EndDenp]
Cl ose #nmmin
End

[But t onLef t Up]
' Cl ear the graphi cbox and cl ear nmenory
Print #main.g, "ds"
' Fill the graphicbox with the color Yellow
Print #main.g, "Fill Yell ow'
' Assi gn the pen col or as Darkbl ue
Print #main.g, "Color Darkblue"
' Assi gn the backcol or as Yel |l ow
Print #main.g, "Backcolor Yellow
' Pl ace the pen

page 2/ 13

Liberty BASIC Programmer's Encyc

Print #main.g, "Place 100 50"

' Wite the directions

Print #main.g, "\\Left Button Up - Fills Yell ow'
Print #main.g, "\\Right Button Up - Fills G een"
' Preserve the graphics

Print #main.g, "Flush"

' Awai t the user's next nove

Wi t

[Butt onRi ght Up]
' Cl ear the graphicbox and cl ear nenory
Print #main.g, "ds"
' Fill the graphicbox with the color Geen
Print #main.g, "Fill G een"
' Assign the pen col or as Darkbl ue
Print #main.g, "Color Darkblue"
' Assi gn the backcol or as G een
Print #main.g, "Backcolor Geen"
' Pl ace the pen
Print #main.g, "Place 100 50"
' Wite the directions
Print #main.g, "\\Left Button Up - Fills Yell ow
Print #main.g, "\\Right Button Up - Fills Geen"
' Preserve the graphics
Print #main.g, "Flush"
' Awai t the user's next nove
Wi t

Using the When command not only detects mouse clicks and movements, but also retrieves the x and y
positions of the mouse when the event occurred. The x and y positions are stored in the special variables
MouseX and MouseY. The variables MouseX and MouseY are also case sensitive. mouseX or MOUSEY
will not work.

This second demo detects when the left button or right button has been depressed and released (When
leftButtonUp, When rightButtonUp) and also retrieves the mouse coordinates (MouseX and MouseY).

' Denp denonstrating

' When | ef t Butt onUp

' When ri ght Butt onUp
' MouseX

' MouseY

W ndowwW dt h = 407
W ndowHei ght = 350

page 3/ 13

Liberty BASIC Programmer's Encyc

UpperLeft X = Int((Di splayWdth - W ndowW dt h)/ 2)
Upper LeftY I nt ((Di spl ayHei ght - W ndowHei ght)/ 2)

' Define a Menu

Menu #main, "&Options", "E&it", [EndDenp]

' Define a G aphi cbox

G aphi cbox #main.g, 0, 0, 400, 300

' Open the W ndow

Qpen "The Mouse When Commands" for W ndow as #main
' Add the Trapcl ose statenent to properly end the program
Print #main, "Trapclose [EndDeno]"

' Add the When | eftButtonUp comrand

Print #main.g, "Wen |leftButtonUp [ButtonLeft Up]"
Print #main.g, "Wen rightButtonUp [ButtonRi ght Up]"

' Pl ace the pen in the Down position

Print #main.g, "Down"

' Fill the graphicbox w th Darkcyan

Print #main.g, "Fill Darkcyan”

' Assign the pen col or as Darkbl ue

Print #main.g, "Color Darkblue"

' Assign the backcol or as Darkcyan

Print #main.g, "Backcolor Darkcyan"

' Assign a position

Print #main.g, "Place 100 50"

' Wite the directions

Print #main.g, "\\Left Button Up - Draw GCircle"
Print #main.g, "\\Right Button Up - Draw Square"
' Preserve the graphics

Print #main.g, "Flush"

Await the user's next nove

Wi t

[EndDenp]
Cl ose #nmmain
End

[But t onLef t Up]
' bt ai n nouse X, y positions with the speci al
' vari abl es MouseX and MuseY
' Not e that MouseX and MouseY are CASE SENSI Tl VE
' nousex, nouseY, etc. wll not work
X = MouseX
y = MouseY
' Cl ear the graphi cbox and cl ear nmenory

page 4/ 13

Liberty BASIC Programmer's Encyc

Print #main.g, "ds"

' Fill the graphicbox with the color Yellow
Print #main.g, "Fill Yell ow'

' Assi gn the pen col or as Darkbl ue

Print #main.g, "Color Darkblue"

' Assi gn the backcol or as Darkbl ue

Print #main.g, "Backcol or Darkbl ue"

Pl ace the pen at the nouse click position
Print #main.g, "Place ";x;" ";y

Draw a filled circle

Print #main.g, "CGrclefilled 20"

' Assign the pen col or as Bl ack

Print #main.g, "Color Black"

' Assi gn the backcol or as Yel |l ow

Print #main.g, "Backcolor Yellow

Assign a position

Print #main.g, "Place 100 50"

Wite the directions

Print #main.g, "\\Left Button Up - Draw G rcle"
Print #main.g, "\\Right Button Up - Draw Square"
' Preserve the graphics

Print #main.g, "Flush"

' Await the user's next nove

Wi t

[Butt onRi ght Up]
' btain nouse x, y positions with the speci al
vari abl es MouseX and MuseY
' Not e that MouseX and MouseY are CASE SENSI Tl VE
' nousex, mnouseY, etc. will not work
X = MouseX
y = MouseY
' Cl ear the graphicbox and cl ear nenory
Print #main.g, "ds"
' Fill the graphicbox with the color Geen
Print #main.g, "Fill Geen"
' Assign the pen col or as Darkbl ue
Print #main.g, "Color Darkblue"
' Assi gn the backcol or as Dar kbl ue
Print #main.g, "Backcol or Darkbl ue"
' Pl ace the pen at the nouse click position
Print #main.g, "Place ";X; Y
' Draw a filled square
Print #main.g, "Boxfilled ";x + 40;" ";y + 40
' Assign the pen col or as Bl ack
Print #main.g, "Color Black"

page 5/ 13

Liberty BASIC Programmer's Encyc

' Assi gn the backcol or as G een

Print #main.g, "Backcolor Geen"

' Assign a position

Print #main.g, "Place 100 50"

' Wite the directions

Print #main.g, "\\Left Button Up - Draw G rcle"
Print #main.g, "\\Right Button Up - Draw Square"
' Preserve the graphics

Print #main.g, "Flush"

' Awai t the user's next nove

Wi t

The When command can track MouseX and MouseY coordinates when the mouse moves as well. This can
be very advantageous when the user is clicking and dragging drawn objects. In this third demo, MouseX
and MouseY are retrieved when the left button is first depressed (When leftButtonDown). This initiates
the drawing of a filled circle at that spot. MouseX and MouseY represent the number of pixels from the
upper left corner of the Graphics Window or Graphicbox. Moving the mouse while keeping the left button
depressed (When leftButtonMove) "drags" the circle along the path of the mouse. Releasing the left button
(When leftButtonUp) places the final circle drawing at MouseX and MouseY where the mouse was
positioned at the time of the left button release.

Denpb denonstrating

' When | ef t But t onDown
' When | ef t Butt onMbve
' When | ef t But t onUp

' MouseX

' MouseY

W ndowwW dt h = 407
W ndowHei ght = 350

UpperLeft X = Int((Di splayWdth - W ndowW dt h)/ 2)
Upper LeftY I nt ((Di spl ayHei ght - W ndowHei ght)/ 2)

' Define a Menu

Menu #main, "&Options", "E&it", [EndDenp]

' Define a G aphi cbox

G aphi cbox #main.g, 0, 0, 400, 300

' Open the W ndow

Open "The Mouse When Commands" for W ndow as #main

' Add the Trapcl ose statenent to properly end the program
Print #main, "Trapclose [EndDeno]"

' Add the When | ef t Button conmands

Print #main.g, "Wen |eftButtonDown [ButtonLeftDown]"

page 6/ 13

Liberty BASIC Programmer's Encyc

Print #main.g, "Wen | eftButtonMyve [ButtonLeftMve]"
Print #main.g, "Wen |leftButtonUp [ButtonLeft Up]"

Pl ace the pen in the Down position
Print #main.g, "Down"

' Fill the graphicbox with Yell ow
Print #main.g, "Fill Yell ow'

' Assign the pen col or as Bl ack
Print #main.g, "Color Black"

' Assi gn the backcol or as Yel |l ow
Print #main.g, "Backcolor Yellow

' Assign a position

Print #main.g, "Place 100 50"

' Wite the directions

Print #main.g, "\\Left Button Down - Start Circle"
Print #main.g, "\\Left Button Move - Drag Circle"
Print #main.g, "\\Left Button Up - Place Circle"

Wi t

[EndDen]
Cl ose #nmin
End

[Butt onLef t Down]
' obtain nouse x, y positions with the speci al
' vari abl es MouseX and MuseY

' Not e t hat MbuseX and MuseY are CASE SENSI Tl VE

nousex, mnouseY, etc. will not work

xa d = MuseX

yd d = MouseY

' Cl ear the graphicbox and cl ear nenory
Print #main.g, "ds"

' Fill the graphicbox with the color Yell ow
Print #main.g, "Fill Yell ow

' Assign the pen col or as Darkbl ue

Print #main.g, "Color Darkblue"

' Assi gn the backcol or as Dar kbl ue

Print #main.g, "Backcol or Darkbl ue"

Pl ace the pen at the nouse click position
Print #main.g, "Place ";xdd;" ";ydd

' Draw a filled circle

Print #main.g, "Grclefilled 20"

' Don't preserve the graphic

Print #main.g, "Discard"

Awai t the user's next nove

Wi t

page 7/ 13

Liberty BASIC Programmer's Encyc

[Butt onLeft Move]
' btain nouse x, y positions with the speci al
' vari abl es MouseX and MuseY
' Not e that MouseX and MouseY are CASE SENSI Tl VE
' nousex, mnouseY, etc. will not work
xNew = MouseX
yNew = MouseY
' Erase the previous circle by drawi ng in background col or
' Assign the pen color as Yellow
Print #main.g, "Color Yellow
' Assi gn the backcol or as Yel |l ow
Print #main.g, "Backcolor Yellow
' Pl ace the pen at the ol d nouse position
Print #main.g, "Place ";xdd;" ";ydd
' Draw a filled circle
Print #main.g, "CGrclefilled 20"
' Draw the new circle by in Darkblue
' Assign the pen col or as Darkbl ue
Print #main.g, "Color Darkblue"
' Assi gn the backcol or as Dar kbl ue
Print #main.g, "Backcol or Darkbl ue"
' Pl ace the pen at the new nouse position
Print #main.g, "Place ";xNew, " ";yNew
' Draw a filled circle
Print #main.g, "Grclefilled 20"
' Don't preserve the graphics
Print #main.g, "Discard"
' Awai t the user's next nove
' Make the new x and newy the old x and old vy

xa d = xNew
yad d = yNew
Wi t

[But t onLef t Up]
' bt ai n nouse X, y positions with the special
' vari abl es MouseX and MuseY
' Not e that MouseX and MouseY are CASE SENSI Tl VE
' nousex, nouseY, etc. wll not work
xFi nal = MouseX
yFi nal = MouseY
' Cl ear the graphi cbox and cl ear nmenory
' Print #main.g, "ds"
' Fill the graphicbox with the color Yellow
' Print #main.g, "Fill Yell ow'
' Assi gn the pen col or as Darkbl ue

page 8/ 13

Liberty BASIC Programmer's Encyc

Print #main.g, "Color Darkblue"

Assi gn the backcol or as Darkbl ue

Print #main.g, "Backcol or Darkbl ue"

Pl ace the pen at the nouse click position
Print #main.g, "Place ";xFinal;" ";yFinal

Draw a filled circle

Print #main.g, "CGrclefilled 20"

' Assign the pen col or as Bl ack

Print #main.g, "Color Black"

' Assi gn the backcol or as Yel |l ow

Print #main.g, "Backcolor Yellow

Assign a position

Print #main.g, "Place 100 50"

Wite the directions

Print #main.g, "\\Left Button Down - Start Circle"
Print #main.g, "\\Left Button Move - Drag Circle"
Print #main.g, "\\Left Button Up - Place Circle"
' Preserve the graphics

Print #main.g, "Flush"

' Await the user's next nove

Wi t

No Button Clicking

It may be desirable at times to track the MouseX and MouseY position of the mouse as it moves over the
Graphics Window or Graphicbox. This is done with the command

Print #main.g, "Wen nouseMyve"

This fourth demo is very similar to the third demo above, except no button clicking is required to start and
stop the drawing of the filled circle.

Deno denonstrating
When nouselMbve

' MouseX

' MouseY

W ndowW dt h = 407
W ndowHei ght = 350

Upper Left X
Upper LeftyY

Int((D splayWdth - WndowW dt h)/2)
I nt ((Di spl ayHei ght - W ndowHei ght)/ 2)

page 9/ 13

Liberty BASIC Programmer's Encyc

' Define a Menu

Menu #main, "&Options", "E&it", [EndDenv]

' Define a G aphi cbox

G aphi cbox #main.g, 0, 0, 400, 300

' Open the W ndow

Open "The Muse Wien Commands” for Wndow as #nmain

' Add the Trapcl ose statenent to properly end the program
Print #main, "Trapclose [EndDeno]"

' Add the Wen | eftButton comrands

Print #main.g, "Wen nouseMove [MouseMoving]™

Pl ace the pen in the Down position
Print #main.g, "Down"

' Fill the graphicbox with Yell ow
Print #main.g, "Fill Yell ow

' Assign the pen col or as Bl ack
Print #main.g, "Color Black"

' Assi gn the backcol or as Yell ow
Print #main.g, "Backcolor Yellow
Assign a position

Print #main.g, "Place 100 50"

' Wite the directions

Print #main.g, "\\Myve Muse Over this Area"
' Preserve the graphics

Print #main.g, "Flush"

Wi t

[EndDenp]
Cl ose #nmmin
End

[MouseMovi ng]
' bt ai n nouse X, y positions with the special
' vari abl es MouseX and MuseY
' Not e that MouseX and MouseY are CASE SENSI Tl VE
' nousex, nouseY, etc. wll not work
xNew = MouseX
yNew = MouseY
' Erase the previous circle by drawi ng in background col or
Assign the pen color as Yellow
Print #main.g, "Color Yellow
' Assi gn the backcol or as Yell ow
Print #main.g, "Backcolor Yellow
' Pl ace the pen at the ol d nouse position
Print #main.g, "Place ";xdd;" ";ydd

page 10/ 13

Liberty BASIC Programmer's Encyc

Draw a filled circle

Print #main.g, "Grclefilled 20"

' Draw the new circle by in Darkblue

' Assi gn the pen col or as Darkbl ue

Print #main.g, "Color Darkblue"

' Assi gn the backcol or as Darkbl ue

Print #main.g, "Backcol or Darkbl ue"

' Pl ace the pen at the new nouse position
Print #main.g, "Place ";xNew, " ";yNew

' Draw a filled circle

Print #main.g, "CGrclefilled 20"

' Don't preserve the graphics

Print #main.g, "D scard"

' Assign the col or as Bl ack™”

Print #main.g, "Color Black"

' Assi gn the backcol or as Yel |l ow

Print #main.g, "Backcolor Yellow

' Assign a position

Print #main.g, "Place 100 50"

' Wite the directions

Print #main.g, "\\Myve Muse Over this Area"
' Preserve the graphics

Print #main.g, "Flush"

' Make the new x and newy the old x and old vy
xa d = xNew

yad d = yNew

' Await the user's next nove

Wi t

Using a Sub as the Event Handler

Mouse events can be sent to a Sub rather than a [BranchLabel]. When that event is sent, sub variables must
be present to receive the handle of the sending graphicbox or graphicswindow and the x and y mouse
coordinates. This is true even if you don't necessarily need that information. Unlike branch events, you
need not use special variables to receive this information. Rather than MouseX and MouseY, any receiving
variables will do.

Deno denonstrating
When | ef t Butt onUp
When right ButtonUp

page 11/13

Liberty BASIC Programmer's Encyc

Nomai nwi n
W ndowW dt h = 407
W ndowHei ght = 350

Upper Left X
Upper LeftyY

Int ((Di splayWdth - WndowW dt h)/ 2)
I nt ((Di spl ayHei ght - W ndowHei ght)/ 2)

' Define a Menu

Menu #main, "&Options", "E&it", [EndDenv]

' Define a G aphi cbox

G aphi cbox #main.g, 0, 0, 400, 300

' Open the W ndow

Open "The Muse Wien Commands” for Wndow as #nmain

' Add the Trapcl ose statement to properly end the program
Print #main, "Trapclose EndDenp"

' Add the Wen | eftButtonUp comrmand

Print #main.g, "Wen |eftButtonUp ButtonLeftUp"

' Pl ace the pen in the Down position
Print #main.g, "Down"

' Fill the graphicbox w th Darkcyan
Print #main.g, "Fill Darkcyan”

' Assign the pen col or as Darkbl ue
Print #main.g, "Color Darkblue"

' Assi gn the backcol or as Darkcyan
Print #main.g, "Backcolor Darkcyan"

' Assign a position

Print #main.g, "Place 100 50"

' Wite the directions

Print #main.g, "\\dick Left Muse Button"
' Preserve the graphics

Print #main.g, "Flush"

' Awai t the user's next nove

Wi t

Sub EndDeno handl e$
Cl ose #handl e$
End Sub

Sub ButtonLeftUp handl e$, xOick, ydick
' handl e$ recei ves the handl e of the graphi cbox
' xClick and ydick receive the nouse x and y coordi nates
' Cl ear the graphicbox and cl ear nenory
Print #handl e$, "C s"
' Fill the graphicbox with the color Yell ow
Print #handle$, "Fill Yellow

page 12/13

Liberty BASIC Programmer's Encyc

' Assign the pen col or as Darkbl ue
Print #handl e$, "Col or Darkbl ue"

' Assi gn the backcol or as Yell ow
Print #handl e$, "Backcol or Yell ow'

' Pl ace the pen

Print #handl e$, "Place ";xOick;" ";ydick

' Wite the receiving information

Print #handl e$, "\Handle = "; handl e$

Print #handl e$, "\Muse X Position = ";xdick
Print #handl e$, "\Muse Y Position = ";ydick

' Preserve the graphics

Print #handl e$, "Flush"

' End the sub and return to previous state
End Sub

Trapping Keyboard Events

The When command can also be used to track keyboard events (pressing a key), but only if the Graphics
Window or Graphicbox has focus. The command is

Print #main.g, "Wen characterlnput[KeyWasPr essed]
The pressed key is stored in the special variable Inkey$. It is important to remember that When
characterInput can only be used with a Graphics Window or Graphicbox, and only when that window or

box has focus.

For more information concerning the When characterInput command, see Capturing Keypresses with

When characterInput and Inkey$.

page 13/13

/Tutorial%20Inkey
/Tutorial%20Inkey
http://www.tcpdf.org

	Tutorial WhenMouse

