Liberty BASIC Programmer's Encyc

Table of Contents

XML for Data storage

XML

Saving Data

Example data file:

Reading Data

XML for Data storage

by LaurenceBoyd Mar 20, 2014 6:21 am 497095900

XML

XML is a flexible, convenient, way of storing data, once you understand how.

Programs typically evolve thru several versions. This often results in different data items being stored by
different program versions. This has meant careful tracking of data version vs program versions, as
programs could not correctly read data from the wrong data version.

XML is flexible as names are stored with the data. Names which are understood can be read, while others
are ignored. The downside is that missing variables may require defaults.

XML is a very convenient to use. The rules are quite simple.

XML consists of elements:

text
Every opening is paired with a closing

<XM_>
<l-- Mar 12, 2014 10:56: 25 C.\Dat a\ Sudoku\ 3. 40. 88. Sudoku -->
<Sudoku>
<Size> 9 </ Sjze>
<Di agonal > O f </ Di agonal >
<Possi bl e> O f </ Possi bl e>
<Reduce> O f </ Reduce>
<Cel |l > <Row> 1 </ Row><Col > 1 </ Col ><Val ue> 7 </ Val ue>

page 1/5

Liberty BASIC Programmer's Encyc

</Cell>

<Cel |l > <Row> 1 </ Row><Col > 7 </ Col ><Val ue> 9 </ Val ue>
</Cell>

<Cel | > <Row> 1 </ Row><Col > 8 </ Col ><Val ue> 3 </ Val ue>
</Cell>

<Cel | > <Row> 2 </ Row><Col > 4 </ Col ><Val ue> 6 </ Val ue>
</Cell>

<Cel | > <Row> 2 </ Row><Col > 5 </ Col ><Val ue> 4 </ Val ue>
</Cell>

<Cel | > <Row> 2 </ Row><Col > 6 </ Col ><Val ue> 7 </Val ue><St age> 2
</ St age> </ Cel | >
<Cel | > <Row> 3 </ Row><Col > 1 </ Col ><Val ue> 1 </ Val ue>
</Cel | >
<Cel | > <Row> 9 </ Row><Col > 2 </ Col ><Val ue> 4 </ Val ue>
</Cel | >
<Cel | > <Row> 9 </ Row><Col > 3 </ Col ><Val ue> 1 </ Val ue>
</Cel | >
</ Sudoku>
</ XM_>

Table of Contents

XML for Data storage
XML

Saving Data

Example data file:

Reading Data

Reading Data

Reading XML data is a little more work than writing it, but still not difficult. Since you wrote the file, you
only need to be able to read what you wrote.

For this code segment, variable names with initial letter capitalized are assumed to have been declared
global.

sub Fi | eLoad

page2/5

Liberty BASIC Programmer's Encyc

filedialog "Load file...", FilePath$+"*.Sudoku", Full Nanme$
call GetFil eNane$
if FileName$="" then notice "No file chosen!": end

open Ful |l Nane$ for input as #File
Fil eOpen = True

call ProcessFile
end sub

sub GetFil eNane$
for pos = len(Full Nane$) to 1 step -1
if md$(Full Name$, pos, 1) = "\" then exit for

next pos

Fi |l eName$ = mi d$(Ful | Name$, pos+1)

Fil ePath$ = | eft $(Ful | Nane$, pos)
end sub

sub ProcessFile
do
call FindTag
sel ect case Tag$
case "<XM.>"
case "<Sudoku>":call InitCell Arrays :call LoadPuzzle
case "</ XM.>" :close #File: FileOpen = Fal se
end sel ect
| oop until FileQOpen
end sub

Fal se

sub LoadPuzzl e
do
call FindTag
sel ect case Tag$
case "<Cel | >" :call LoadCel
case "<Di agonal >" :Di agActive = Fi ndContentLogic()
case "</ Di agonal >"
case "<Possi bl e>" : Possi bl eShow
case "</ Possi bl e>"

Fi ndCont ent Logi c()

case "<Reduce>" : ReduceActi ve = Fi ndCont ent Logi c()
case "</ Reduce>"

case "<Si ze>" :call CheckSize

case "</ Si ze>"

case "</ Sudoku>" :call ShowRefresh: exit sub

end sel ect
| oop until FileQOpen = Fal se
end sub

sub LoadCel

page3/5

Liberty BASIC Programmer's Encyc

stage = 1
do
call FindTag
sel ect case Tag$

case "<Row>" :row = Fi ndCont ent Val ue()
case "</ Row>"
case "<Col >" :col = FindCont ent Val ue()

case "</ Col >"
case "<Val ue>" :va
case "</ Val ue>"
case "<Stage>" :stage = Fi ndContent Val ue()
case "</ Stage>"
case "</ Cell>" :CellValue(row,col) = val: Cell Stage(row,col) =

st age

exit sub

end sel ect
| oop until FileQOpen = Fal se
end sub

Fi ndCont ent Val ue()

sub Loadl nput Buf f er
if eof (#File) <> 0 then close #File: FileOpen = False: exit sub
do until (len(lnputBuffer$) > 0) or (eof (#File) <> 0)
"skip blank |ines
line input #File, InputBuffer$

| oop
end sub
sub Fi ndTag
if len(lnputBuffer$) = 0 then call Loadl nput Buffer
for i =1 to len(lnputBuffer$)
if md$(InputBuffer$, i, 1) = "<" then exit for
next i

for j=i+1 to |l en(InputBuffer$)
if mid$(IlnputBuffer$, j, 1) = ">" then exit for

next |

Tag$ = m d$(InputBuffer$, i, j-i+1)

| nput Buffer$ = m d$(InputBuffer$, j+1) 'renpve tag
end sub

function FindContentString$()
for i =1 to len(lnputBuffer$)
if md$(InputBuffer$, i, 1) = "<" then exit for
next i
FindContentString$ = trins(m d$(l nputBuffer$, 1, i-1))
| nput Buf fer$ = m d$(InputBuffer$, i) 'renpve content
end function

page4/5

Liberty BASIC Programmer's Encyc

functi on Fi ndCont ent Val ue()
for i = 1 to len(lnputBuffer$)
if md$(InputBuffer$, i, 1) = "<" then exit for
next i
Fi ndCont ent Val ue = val (m d$(I nputBuffer$, 1, i-1))
| nput Buf fer$ = m d$(InputBuffer$, i) 'renpve content
end function

functi on Fi ndCont ent Logi c()
Fi ndCont ent Logi ¢ = Fal se

if FindContentString$() = "on" then FindContentLogic = True

end function

20 Mar 2014 9:18

page5/5

http://www.tcpdf.org

	XML Data Storage

