Liberty BASIC Programmer's Encyc

Sprite Byte Tutorials Lesson Six: User-Controlled Sprite and Computer-
Controlled Sprite

by Alyce Watson http://alycesrestaurant.com/

Alyce

Table of Contents

Sprite Byte Tutorials Lesson Six: User-Controlled Sprite and Computer-Controlled Sprite

Sprites Controlled by User and Computer

Sprite Location Stored in a Variable

Moving Independently

Boundary Detection

Variables for Amount of Movement

Stopping at the Edge

Changing Direction

Review

Demonstration Programs

Challenges

Sprites Controlled by User and Computer
In Lesson Four we leaned how to move a sprite with code routines, and in Lesson Five we learned how to

move a sprite according to user input. If we put those two methods together, we've got the basis for an
arcade game.

Sprite Location Stored in a Variable

In Lesson Five we stored the location of the user-controlled sprite in variables called SpriteX and SpriteY

page 1/9

http://alycesrestaurant.com/
https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce
/sprite4
/sprite5
/sprite5

Liberty BASIC Programmer's Encyc

so that we could change those values easily. We updated the location of the sprite whenever the user
pressed one of the arrow keys. It looked like this:

"right arrow = X gets bigger:

if asc(right$(lnkey$,1))=39 then spriteX = spriteX + 3
"left arrow = X gets smaller:

if asc(right$(lnkey$,1))=37 then spriteX = spriteX - 3
"up arrow = Y gets smaller

if asc(right$(lnkey$,1))=38 then spriteY = spriteY - 3

"down arrow = Y gets bigger:

if asc(right$(lnkey$,1))=40 then spriteY = spriteY + 3
"l ocate sprite at new position and update display

#W. g "spritexy guy ";spriteX " ";spriteY

#w. g "drawsprites”

You can review the methods here:
Sprite Byte Tutorials Lesson Five: User-Controlled Sprite

We'll add a user-controlled sprite just as we did in Lesson Five. We'll also add a computer-controlled
sprite. We must first load a bitmap for the sprite image. The crab bitmap is located in the Sprites folder in
the Liberty BASIC root directory.

| oadbnmp "crab", "sprites\crabl. bnmp"

We add the sprite with the ADDSPRITE command and give the sprite the name, "enemy", like this:

#w. g "addsprite eneny crab”

We'll call the variables for the location of the crab sprite crabX and crabY. We issue the spritexy
command, to locate the crab sprite, then we issue the drawsprites command to update the display.

Did you notice how we named the variables to reflect their usage? This is an easy way of documenting our
code so that it is easy to understand.

"variable for location of conputer sprite
crabX = 360 : crabY = 100

#w. g "spritexy eneny ";crabX " ";crab¥Y
#w. g "drawsprites" 'update screen

Moving Independently

page2/9

/sprite5
/sprite5

Liberty BASIC Programmer's Encyc

The crab sprite will move at regular intervals because we use a timer to update the crab's location as we did
in Lesson Four. The timer command looks like this:

"set up a tinmer to nove crab sprite
ti mer 300, [updateDi splay]

The crab and the smiley move independently of one another. The routine triggered by the timer moves the
crab sprite:

[updat eDi spl ay]
"nove conputer-controlled sprite at tinmer intervals
crabX = crabX - 5 : crabY = crabYy + 2
"l ocate sprites at new positions and update display

#w. g "spritexy eneny ";crabX " ";crab¥Y
#w. g "drawsprites”
wai t

The routine triggered by the user's keyboard presses moves the smiley sprite:

[updat ePosi ti on]

"nmove user-controlled sprite when arrows are pressed
'37 = left arrow

'38 = up arrow

"39 = right arrow

" 40 down arrow

"Arrow keys make | nkey$ two characters |ong,

'so we check the rightnost character with

"the right$() function.

"right arrow = X gets bigger:

if asc(right$(lnkey$,1))=39 then spriteX = spriteX + 3
"left arrow = X gets small er:

if asc(right$(lnkey$,1))=37 then spriteX = spriteX - 3
"up arrow = Y gets snaller:
if asc(right$(lnkey$,1))=38 then spriteY = spriteY - 3

"down arrow = Y gets bigger:

if asc(right$(lnkey$,1))=40 then spriteY = spriteY + 3
#W. g "spritexy guy ";spriteX " ";spriteY

#w. g "drawsprites”

wai t

There are two demonstration programs at the end of this lesson. The first one is a very simple program that
shows a user-controlled smiley sprite and a computer-controlled crab sprite.

page 3/9

/sprite4

Liberty BASIC Programmer's Encyc

Boundary Detection

The methods discussed above work well, but if the program runs for a bit, the crab moves off the screen,
never to be seen again! We can stop the crab easily by checking its location each time we move it. If it is
close to one of the edges, we will change its direction.

Variables for Amount of Movement

We accomplish boundary detection most easily if we store the amount of X and Y movement in variables,
just as we stored the X and Y locations in variables.

"add variable for increnent to nove crab each time
moveCrabX = -5 : noveCrabY = 2

Stopping at the Edge

Each time we update the location of the crab sprite, we'll test the current location with a series of if/then
statements. If the crab's X location variable is near the left side, we'll change the incremental X variable to
be 5 so that it begins to travel toward the right. If the crab's X location is near the right side, we'll change
the incremental X variable to be -5 so that it begins to travel toward the left. If the crab's Y location is near
the top, we'll change the incremental Y variable to be 2 so that it begins to travel downward. If the crab's Y
location is near the bottom, we'll change the incremental Y variable to be -2 so that it begins to travel
upward.

"add boundary detection and reverse direction at edges
if (crabX > 370) then noveCrabX = -5

if (crabX < 10) then noveCrabX =5

if (crabY > 270) then noveCrabY = -2

if (crabY < 10) then noveCrab¥Y = 2

Changing Direction

We've checked to see if the crab is at the edge of the display and we've modified the movement variables
if needed. Here's how we use those variables. We add the incremental variables to the location variables
then issue a spritexy command to update the crab's location on the screen, like this:

page 4/9

Liberty BASIC Programmer's Encyc

crabX = crabX + noveCrabX : crabY = crabY + noveCrabyY
#w. g "spritexy eneny ";crabX " ";crabyY

Review

In Lesson Six, we've used a computer-controlled sprite that moves when a timer event is triggered. We've
also used a user-controlled sprite that moves when a user keyboard event is triggered. These actions
happen independently of one another. The first demonstration program below includes the complete code.
We've also added boundary detection for the computer-controlled sprite. We've stored the amount of
movement in the X and Y directions in special variables that we use to incremement the sprite's location
each time it moves. This is demonstrated in the second program listed below.

Demonstration Programs

Demonstration Program

The following demonstration programs require bitmaps in your Liberty BASIC sprites folder and they must be
run from the Liberty BASIC root directory.

Demo of Computer-Controlled Sprite and User-Controlled Sprite

"Add a sprite and locate it at x=10, y=30.
"Al'l ow user to press arrow buttons to nove sprite.
"Add a conputer-controlled sprite.
nomai NW n
| oadbnp "smiley", "sprites\smley.bnp"
| oadbnp "crab", "sprites\crabl. bnmp"
| oadbnp "I andscape", "sprites\bgl. bnp"
W ndowHei ght = 350 : WndowN dth = 400
gr aphi cbox #w.g, 0, 0, 400, 300
statictext #w.s, "", 40,300, 100, 40
open "User Sprite + Conputer Sprite
#w "trapclose [quit]"
#w. g "down"
#w. g "background | andscape”
#w. g "addsprite guy smley"
"variable for location of user sprite

for wi ndow nf as #w

page5/9

Liberty BASIC Programmer's Encyc

spriteX = 10 : spriteY = 30

#W. g "spritexy guy ";spriteX " ";spriteY
"set up event trapping for key presses
#w. g "setfocus" ' MIST setfocus to graphi cbox
#w. g "when characterl nput [updatePosition]"
"add conputer-controlled crab sprite

#w. g "addsprite eneny crab"

"variable for location of conputer sprite
crabX = 360 : crabY = 100

#w. g "spritexy eneny ";crabX " ";crab¥Y
#w. g "drawsprites" 'update screen

"set up a tinmer to nove crab sprite

ti mer 300, [updateDi splay]
wai t

[updat ePosi ti on]

"nmove user-controlled sprite when arrows are pressed

' 37 left arrow

'38 = up arrow

" 39 right arrow

40 = down arrow

"Arrow keys make | nkey$ two characters |ong,
'so we check the rightnost character with
"the right$() function.

"right arrow = X gets bigger

if asc(right$(lnkey$,1))=39 then spriteX
"left arrow = X gets small er:

spriteX + 3

if asc(right$(lnkey$,1))=37 then spriteX = spriteX - 3
"up arrow = Y gets snaller:
if asc(right$(lnkey$,1))=38 then spriteY = spriteY - 3
"down arrow = Y gets bigger
if asc(right$(lnkey$,1))=40 then spriteY = spriteY + 3

#wW. g "spritexy guy ";spriteX"
#w. g "drawsprites”
wai t

[updat eDi spl ay]

"nmove conputer-controlled sprite at tiner intervals
crabX = crabX - 5 : crabY = crabY + 2

"l ocate sprites at new positions and update display

";spriteY

#w. g "spritexy eneny ";crabX;" ";crabyY
#w. g "drawsprites”

wai t

[quit]

timer O

unl oadbnp "Il andscape”
unl oadbnp "sm | ey”
unl oadbnp "crab"

page 6/9

Liberty BASIC Programmer's Encyc

cl ose #w : end

Boundary Detection Added

"Add a sprite and locate it at x=10, y=30.
"All ow user to press arrow buttons to nove sprite.
"Add a conputer-controlled sprite.
" Add boundary detection.
nomai NWi n
| oadbnp "sm | ey", "sprites\smley. bnmp"
| oadbnmp "crab", "sprites\crabl. bnp”
| oadbnp "Il andscape”, "sprites\bgl. bnp"
W ndowHei ght = 350 : W ndowWdth = 400
gr aphi cbox #w.g, 0, 0, 400, 300
statictext #w.s, "", 40, 300, 100, 40
open "User Sprite + Conputer Sprite" for wi ndow_nf as #w
#w "trapclose [quit]"
#w. g "down"
#w. g "background | andscape”
#w. g "addsprite guy smley"
spriteX = 10 : spriteY = 30
#W. g "spritexy guy ";spriteX " ";spriteY
"set up event trapping for key presses
#w. g "setfocus" ' MIST setfocus to graphi cbox
#w. g "when characterl nput [updatePosition]"
"add conputer-controlled crab sprite
#w. g "addsprite eneny crab”
"original |ocation of crab
crabX = 360 : crabY = 100
"add variable for increnent to nove crab each tine
noveCrabX = -5 : noveCrabY = 2
#w. g "spritexy eneny ";crabX;" ";crabyY
#w. g "drawsprites” 'update screen
"set up a timer to nove crab sprite
timer 100, [updateDi splay]
wai t
[updat ePosi ti on]
'nove user-controlled sprite when arrows are pressed
' 37 | eft arrow
'38 = up arrow
' 39 right arrow
"40 = down arrow
" Arrow keys make | nkey$ two characters |ong,
'so we check the rightnost character with
‘the right$() function.

page 7/9

Liberty BASIC Programmer's Encyc

"right arrow = X gets bigger:

if asc(right$(lnkey$,1))=39 then spriteX = spriteX + 3
"left arrow = X gets smaller:

if asc(right$(lnkey$,1))=37 then spriteX = spriteX - 3
"up arrow = Y gets smaller

if asc(right$(lnkey$,1))=38 then spriteY = spriteY - 3
"down arrow = Y gets bigger:

if asc(right$(lnkey$,1))=40 then spriteY = spriteY + 3
#wW. g "spritexy guy ";spriteX " ";spriteY

#w. g "drawsprites”
wai t

[updat eDi spl ay]

"l ocate sprites at new positions and update display
"add boundary detection and reverse direction at edges
if (crabX > 370) then noveCrabX = -5

if (crabX < 10) then noveCrabX = 5

if (crabY > 270) then noveCrabY = -2

if (crabY < 10) then noveCrabyY = 2

"nove conputer-controlled sprite at tinmer intervals
crabX = crabX + noveCrabX : crabY = crabY + noveCrabyY

#w. g "spritexy eneny ";crabX;" ";crabyY
#w. g "drawsprites”

wai t

[quit]

timer O

unl oadbnp "I andscape”
unl oadbnp "sm | ey”
unl oadbnp "crab"

cl ose #w : end

Challenges

challenge: make the crab go in a random direction or speed after it encounters an edge.
challenge: give the crab multiple images so it appears to be walking realistically.
challenge: prevent the user-controlled sprite from going off the edge.

challenge: use different images to change the look of this program.

Table of Contents

Sprite Byte Tutorials Lesson Six: User-Controlled Sprite and Computer-Controlled Sprite

Sprites Controlled by User and Computer

page 8/9

Liberty BASIC Programmer's Encyc

Sprite Location Stored in a Variable
Moving Independently

Boundary Detection

Variables for Amount of Movement
Stopping at the Edge

Changing Direction

Review

Demonstration Programs

Challenges

page9/9

http://www.tcpdf.org

	sprite6

